Announcements

• Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
Announcements

• Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ‣ Extra tutor office hours on Wednesday 2/4 (See Piazza for details)
Announcements

- Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
 - Extra tutor office hours on Wednesday 2/4 (See Piazza for details)
- Midterm 1 is on Monday 2/9 from 7pm to 9pm!
Announcements

• Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Extra tutor office hours on Wednesday 2/4 (See Piazza for details)
• Midterm 1 is on Monday 2/9 from 7pm to 9pm!
 ▪ Review session on Saturday 2/7
Announcements

• Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Extra tutor office hours on Wednesday 2/4 (See Piazza for details)
• Midterm 1 is on Monday 2/9 from 7pm to 9pm!
 ▪ Review session on Saturday 2/7
 ▪ HKN review session on Sunday 2/8
Announcements

• Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Extra tutor office hours on Wednesday 2/4 (See Piazza for details)
• Midterm 1 is on Monday 2/9 from 7pm to 9pm!
 ▪ Review session on Saturday 2/7
 ▪ HKN review session on Sunday 2/8
 ▪ Includes topics up to and including this lecture
Announcements

• Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Extra tutor office hours on Wednesday 2/4 (See Piazza for details)
• Midterm 1 is on Monday 2/9 from 7pm to 9pm!
 ▪ Review session on Saturday 2/7
 ▪ HKN review session on Sunday 2/8
 ▪ Includes topics up to and including this lecture
 ▪ Closed book/note exam, except for one page (2 sides) of hand-written notes & study guide
Announcements

• Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Extra tutor office hours on Wednesday 2/4 (See Piazza for details)
• Midterm 1 is on Monday 2/9 from 7pm to 9pm!
 ▪ Review session on Saturday 2/7
 ▪ HKN review session on Sunday 2/8
 ▪ Includes topics up to and including this lecture
 ▪ Closed book/note exam, except for one page (2 sides) of hand-written notes & study guide
 ▪ Cannot attend? Fill out the conflict form by Wednesday 2/4! http://goo.gl/2P5fKq
Announcements

• Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Extra tutor office hours on Wednesday 2/4 (See Piazza for details)
• Midterm 1 is on Monday 2/9 from 7pm to 9pm!
 ▪ Review session on Saturday 2/7
 ▪ HKN review session on Sunday 2/8
 ▪ Includes topics up to and including this lecture
 ▪ Closed book/note exam, except for one page (2 sides) of hand-written notes & study guide
 ▪ Cannot attend? Fill out the conflict form by Wednesday 2/4! http://goo.gl/2P5fKq
• Optional Hog strategy contest ends Wednesday 2/18 @ 11:59pm
Hog Contest Rules
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person

• Your score is the number of entries
 against which you win more than 50%
 of the time
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person

• Your score is the number of entries
 against which you win more than 50%
 of the time

• All strategies must be deterministic,
 pure functions of the current player
 scores
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person

• Your score is the number of entries
 against which you win more than 50%
 of the time

• All strategies must be deterministic,
 pure functions of the current player
 scores

• All winning entries will receive 2
 points of extra credit
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person

• Your score is the number of entries against which you win more than 50% of the time

• All strategies must be deterministic, pure functions of the current player scores

• All winning entries will receive 2 points of extra credit

• The real prize: honor and glory
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person

• Your score is the number of entries against which you win more than 50% of the time

• All strategies must be deterministic, pure functions of the current player scores

• All winning entries will receive 2 points of extra credit

• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person

• Your score is the number of entries against which you win more than 50% of the time

• All strategies must be deterministic, pure functions of the current player scores

• All winning entries will receive 2 points of extra credit

• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person

• Your score is the number of entries against which you win more than 50% of the time

• All strategies must be deterministic, pure functions of the current player scores

• All winning entries will receive 2 points of extra credit

• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen
Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person
- Your score is the number of entries against which you win more than 50% of the time
- All strategies must be deterministic, pure functions of the current player scores
- All winning entries will receive 2 points of extra credit
- The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person
• Your score is the number of entries against which you win more than 50% of the time
• All strategies must be deterministic, pure functions of the current player scores
• All winning entries will receive 2 points of extra credit
• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

Spring 2015 Winners

YOUR NAME COULD BE HERE... FOREVER!
Order of Recursive Calls
The Cascade Function

```python
1  def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
8  cascade(123)
```

(Demo)

Global frame

- `func cascade(n) [parent=Global]`
- `cascade`

- `f1: cascade [parent=Global]`
 - `n 123`
 - `Return value None`

- `f2: cascade [parent=Global]`
 - `n 12`
 - `Return value None`

- `f3: cascade [parent=Global]`
 - `n 1`
 - `Return value None`

Interactive Diagram
The Cascade Function

```python
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
8
cascade(123)
```

Program output:
```
123
12
1
12
```
The Cascade Function

```python
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
8
cascade(123)
```

Program output:
```
123
12
1
12
```

(Demo)

```
Global frame

func cascade(n) [parent=Global]

cascade

f1: cascade [parent=Global]

n  123

f2: cascade [parent=Global]

n  12
Return value  None

f3: cascade [parent=Global]

n  1
Return value  None
```

Each cascade frame is from a different call to cascade.
The Cascade Function

```python
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
8
cascade(123)
```

Program output:

```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.

Interactive Diagram
The Cascade Function

```python
1. def cascade(n):
2.     if n < 10:
3.         print(n)
4.     else:
5.         print(n)
6.         cascade(n//10)
7.         print(n)
8.     cascade(123)
```

Program output:
```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Interactive Diagram
The Cascade Function

```
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
8
cascade(123)
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Program output:

```
123
12
1
12
```
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n // 10)
    print(n)
cascade(123)
```

Program output:

```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
The Cascade Function

```
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
8
9 cascade(123)
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Program output:
```
123
12
1
12
```
The Cascade Function

• Each cascade frame is from a different call to cascade.
• Until the Return value appears, that call has not completed.
• Any statement can appear before or after the recursive call.
Two Definitions of Cascade

(Demo)
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
- Both are recursive functions, even though only the first has typical structure
Example: Inverse Cascade
Write a function that prints an inverse cascade:
Inverse Cascade

Write a function that prints an inverse cascade:

1
12
123
1234
123
12
1
1
Inverse Cascade

Write a function that prints an inverse cascade:

```
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```
Inverse Cascade

Write a function that prints an inverse cascade:

```
def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```
Write a function that prints an inverse cascade:

```python
inverse_cascade = lambda n: f_then_g(grow, print, n // 10)
shrink = lambda n: f_then_g(print, shrink, n // 10)

def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

def grow(n):
    print(n)

def shrink(n):
    print(n)

def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```

```
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
 def grow(n):
 print(n)
 shrink(n)

 def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)
```

Tree Recursion
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

\[ n: \ 0, 1, 2, 3, 4, 5, 6, 7, 8, \]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
fib(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

\[
\begin{align*}
n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
  n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
  \text{fib}(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

def fib(n):

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

def fib(n):
    if n == 0:
        
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
 if n == 0:
 return 0
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
  n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, \\
  \text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n & : 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n) & : 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
  n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
  \text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n & : 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
fib(n) & : 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)
```

A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

fib(5)
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
<table>
<thead>
<tr>
<th>fib(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(3)</td>
</tr>
</tbody>
</table>
```
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
<table>
<thead>
<tr>
<th>fib(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(3)</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>fib(2)</td>
</tr>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
```
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
**A Tree-Recursive Process**

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure:

- fib(5)
- /-------/
- |       |
- |   fib(3)   |
- |         |   |
- |   fib(1)   fib(2)   |
- |         |   |   |
- |   fib(0)   fib(1)   |
- |         |   |   |
- |   0       1       |

- /-------/
- |       |
- |   fib(4)   |
- |         |   |
- |   fib(2)   |
- |         |   |   |
- |   fib(0)   fib(1)   |
- |         |   |   |
- |   0       1       |

- /-------/
- |       |
- |   fib(3)   |
- |         |   |
- |   fib(1)   |
- |         |   |   |
- |   fib(0)   fib(1)   |
- |         |   |   |
- |   1       0       1   |

- /-------/
- |       |
- |   fib(2)   |
- |         |   |
- |   fib(1)   |
- |         |   |   |
- |   fib(0)   fib(1)   |
- |         |   |   |
- |   1       0       1   |

- /-------/
- |       |
- |   fib(1)   |
- |         |   |
- |   fib(0)   |
- |         |   |   |
- |   0       1   |

- /-------/
- |       |
- |   0   |
- |   1   |

This diagram illustrates the recursive calls in the Fibonacci sequence.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure...
A Tree-Recursive Process

The computational process of fib evolves into a tree structure...
A Tree-Recursive Process

The computational process of $\text{fib}$ evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
Repetition in Tree-Recursive Computation
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.

(We can speed up this computation dramatically in a few weeks by remembering results.)
Example: Counting Partitions
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

count_partitions(6, 4)

2 + 4 = 6
1 + 1 + 4 = 6
3 + 3 = 6
1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6
1 + 1 + 2 + 2 = 6
1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 & = 6 \\
1 + 1 + 4 & = 6 \\
3 + 3 & = 6 \\
1 + 2 + 3 & = 6 \\
1 + 1 + 1 + 3 & = 6 \\
2 + 2 + 2 & = 6 \\
1 + 1 + 2 + 2 & = 6 \\
1 + 1 + 1 + 1 + 2 & = 6 \\
1 + 1 + 1 + 1 + 1 + 1 & = 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

$$\text{count_partitions}(6, 4)$$

$2 + 4 = 6$
$1 + 1 + 4 = 6$
$3 + 3 = 6$
$1 + 2 + 3 = 6$
$1 + 1 + 1 + 3 = 6$
$2 + 2 + 2 = 6$
$1 + 1 + 2 + 2 = 6$
$1 + 1 + 1 + 1 + 2 = 6$
$1 + 1 + 1 + 1 + 1 + 1 = 6$
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

$$\text{count_partitions}(6, 4)$$

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

```
count_partitions(6, 4)
```

*Recursive decomposition: finding simpler instances of the problem.*

*Explore two possibilities:*

*Use at least one 4*

*Don't use any 4*

*Solve two simpler problems:*
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - \( \text{count_partitions}(2, 4) \)
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - $\text{count_partitions}(2, 4)$
  - $\text{count_partitions}(6, 3)$
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count}_{\text{partitions}}(6, 4)
\]

• Recursive decomposition: finding simpler instances of the problem.
  • Explore two possibilities:
    • Use at least one 4
    • Don't use any 4
  • Solve two simpler problems:
    • \text{count}_{\text{partitions}}(2, 4)
    • \text{count}_{\text{partitions}}(6, 3)
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

count_partitions(6, 4)

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
  • Use at least one 4
  • Don't use any 4
• Solve two simpler problems:
  • count_partitions(2, 4)
  • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count\_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - \( \text{count\_partitions}(2, 4) \)
  - \( \text{count\_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count\_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - \( \text{count\_partitions}(2, 4) \)
  - \( \text{count\_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.
The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.

- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4

- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)

- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - `count_partitions(2, 4)`
  - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 # Implementation goes here
```

```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

* Recursive decomposition: finding simpler instances of the problem.
* Explore two possibilities:
 * Use at least one 4
 * Don't use any 4
* Solve two simpler problems:
 * $\text{count_partitions}(2, 4)$
 * $\text{count_partitions}(6, 3)$
* Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m > n:
        return 0
    # Recursive case
    return count_partitions(n, m-1) + count_partitions(n-m, m)
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n < m:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        # Other cases
```


Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

```
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
  • Use at least one 4
  • Don't use any 4
• Solve two simpler problems:
  • count_partitions(2, 4)
  • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 if m > n:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 # Recursive case
 if m == 1:
 return 1
 else:
 # Case when we use at least one m
 with_m = count_partitions(n-m, m)
 # Case when we don't use any m
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```

16
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

• Recursive decomposition: finding simpler instances of the problem.

• Explore two possibilities:
  • Use at least one 4
  • Don't use any 4

• Solve two simpler problems:
  • count_partitions(2, 4)
  • count_partitions(6, 3)

• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 if m > n:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 if n == 0:
 return 1
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - $\text{count_partitions}(2, 4)$
  - $\text{count_partitions}(6, 3)$
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 if n == 0:
 return 1
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
  • Use at least one 4
  • Don't use any 4
• Solve two simpler problems:
  • count_partitions(2, 4)
  • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```
The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - `count_partitions(2, 4)`
  - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - $\text{count_partitions}(2, 4)$
  - $\text{count_partitions}(6, 3)$
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```

(Demo)