61A Lecture 7

Wednesday, February 4
Announcements

• Project 1 is due Thursday 2/5 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Extra tutor office hours on Wednesday 2/4 (See Piazza for details)
• Midterm 1 is on Monday 2/9 from 7pm to 9pm!
 ▪ Review session on Saturday 2/7
 ▪ HKN review session on Sunday 2/8
 ▪ Includes topics up to and including this lecture
 ▪ Closed book/note exam, except for one page (2 sides) of hand-written notes & study guide
 ▪ Cannot attend? Fill out the conflict form by Wednesday 2/4! http://goo.gl/2P5fKq
• Optional Hog strategy contest ends Wednesday 2/18 @ 11:59pm
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person
• Your score is the number of entries against which you win more than 50% of the time
• All strategies must be deterministic, pure functions of the current player scores
• All winning entries will receive 2 points of extra credit
• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

Spring 2015 Winners

YOUR NAME COULD BE HERE... FOREVER!
Order of Recursive Calls
The Cascade Function

1. def cascade(n):
 2. if n < 10:
 3. print(n)
 4. else:
 5. print(n)
 6. cascade(n//10)
 7. print(n)
 8. 9. cascade(123)

Program output:

123
12
1
12

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Interactive Diagram
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n // 10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n // 10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
- Both are recursive functions, even though only the first has typical structure
Example: Inverse Cascade
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```

```python
def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)
```

```python
grow = lambda n: f_then_g(grow, print, n // 10)
shrink = lambda n: f_then_g(print, shrink, n // 10)
```
Tree Recursion
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
n & : \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
fib(n) & : \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

A Tree-Recursive Process

The computational process of fib evolves into a tree structure
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

(We can speed up this computation dramatically in a few weeks by remembering results)
Example: Counting Partitions
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

(Demo)

Interactive Diagram