61A Lecture 9

Wednesday, February 11
Announcements

• Guerrilla section this Saturday 2/14 on recursion (Please RSVP on Piazza!)

• Composition scores for Project 1 will mostly be assigned this week
 ▪ 0/2: Make changes suggested by the TA/tutor in order to earn back the 2 lost points
 ▪ 2/2: No need to make changes, but keep their comments in mind for future projects

• Homework 3 due Wednesday 2/18 @ 11:59pm
 ▪ Homework party on Tuesday 2/17 @ 5pm in 2050 VLSB

• Optional Hog Contest entries due Wednesday 2/18 @ 11:59pm

• Midterm 1 solutions are posted; grades will be released soon
Data Abstraction
Data Abstraction

- Compound values combine other values together
 - A date: a year, a month, and a day
 - A geographic position: latitude and longitude
- Data abstraction lets us manipulate compound values as units
- Isolate two parts of any program that uses data:
 - How data are represented (as parts)
 - How data are manipulated (as units)
- Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use
Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

Assume we can compose and decompose rational numbers:

- \(\text{rational}(n, d) \): returns a rational number \(x \)
- \(\text{numerator}(x) \): returns the numerator of \(x \)
- \(\text{denominator}(x) \): returns the denominator of \(x \)
Rational Number Arithmetic

\[
\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}
\]

\[
\frac{3}{2} + \frac{3}{5} = \frac{21}{10}
\]

Example

General Form

\[
\frac{nx}{dx} \times \frac{ny}{dy} = \frac{nx \times ny}{dx \times dy}
\]

\[
\frac{nx}{dx} + \frac{ny}{dy} = \frac{nx \times dy + ny \times dx}{dx \times dy}
\]
def mul_rational(x, y):
 return rational(numer(x) * numer(y),
 denom(x) * denom(y))

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)

def print_rational(x):
 print(numer(x), '/', denom(x))

def rations_are_equal(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

• rational(n, d) returns a rational number x
• numer(x) returns the numerator of x
• denom(x) returns the denominator of x

Selector

These functions implement an abstract data type for rational numbers
Pairs
Representing Pairs Using Lists

>>> pair = [1, 2]
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1

>>> pair[1]
2

>>> from operator importgetitem

>>>getitem(pair, 0)
1
>>>getitem(pair, 1)
2

More lists next lecture
Representing Rational Numbers

def rational(n, d):
 """Construct a rational number that represents N/D."""
 return [n, d]

def numer(x):
 """Return the numerator of rational number X."""
 return x[0]

def denom(x):
 """Return the denominator of rational number X."""
 return x[1]
Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2} \quad \frac{2}{5} + \frac{1}{10} = \frac{1}{2}
\]

\[
\frac{15}{6} \times \frac{1/3}{1/3} = \frac{5}{2} \quad \frac{25}{50} \times \frac{1/25}{1/25} = \frac{1}{2}
\]

```python
from fractions import gcd

def rational(n, d):
    """Construct a rational number x that represents n/d."""
    g = gcd(n, d)
    return [n//g, d//g]
```
Abstraction Barriers
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td>add_rational, mul_rational, rationals_are_equal, print_rational</td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rational, numer, denom</td>
</tr>
<tr>
<td>Implement selectors and constructor for rationals</td>
<td>two-element lists</td>
<td>list literals and element selection</td>
</tr>
</tbody>
</table>

Implementation of lists
Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):
 return [x[0] * y[1], x[1] * y[0]]
Data Representations
What is Data?

• We need to guarantee that constructor and selector functions work together to specify the right behavior

• Behavior condition: If we construct rational number x from numerator n and denominator d, then $\text{numer}(x)/\text{denom}(x)$ must equal n/d

• Data abstraction uses selectors and constructors to define behavior

• If behavior conditions are met, then the representation is valid

You can recognize data by behavior

(Demo)
def rational(n, d):
 def select(name):
 if name == 'n':
 return n
 elif name == 'd':
 return d
 return select

def numer(x):
 return x('n')

def denom(x):
 return x('d')