Wednesday, March 4
Announcements

• Delayed: Hog contest winners will be announced Friday 3/6 in lecture

• Quiz 2 due Thursday 3/5 @ 11:59pm (challenging!)

• Project 3 due Thursday 3/12 @ 11:59pm (get started now!)

• Delayed: Homework 6 due Monday 3/16 @ 11:59pm

• Midterm 2 is on Thursday 3/19 7pm–9pm

 ▪ Emphasis: mutable data, object-oriented programming, recursion, and recursive data
Generic Functions of Multiple Arguments
More Generic Functions

A function might want to operate on multiple data types

Last lecture:
- Polymorphic functions using shared messages
- Interfaces: collections of messages that have specific behavior conditions
- Two interchangeable implementations of complex numbers

This lecture:
- An arithmetic system over related types
- Operator overloading
- Type dispatching
- Type coercion

What's different? Today's generic functions apply to multiple arguments that don't share a common interface.
Rational Numbers

class Rational:
 """A rational number represented as a numerator and denominator."""
 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

 def add(self, other):
 nx, dx = self.numer, self.denom
 ny, dy = other.numer, other.denom
 return Rational(nx * dy + ny * dx, dx * dy)

 def mul(self, other):
 numer = self.numer * other.numer
 denom = self.denom * other.denom
 return Rational(numer, denom)
Complex Numbers

class Complex:
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
def angle(self):
 return atan2(self.imag, self.real)

class ComplexRI(Complex):
 """A rectangular representation."""
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

class ComplexMA(Complex):
 """A polar representation."""
 def __init__(self, magnitude, angle):
 self.magnitude = magnitude
 self.angle = angle

 @property
def real(self):
 return self.magnitude * cos(self.angle)

 @property
def imag(self):
 return self.magnitude * sin(self.angle)

(Demo)
Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

<table>
<thead>
<tr>
<th>Shared interface</th>
<th>Operators</th>
<th>Cross-type arithmetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>>>> Rational(3, 14).add(Rational(2, 7))</td>
<td>Rational(1, 2)</td>
<td>>>> Rational(1, 2) + ComplexRI(0.5, 2)</td>
</tr>
<tr>
<td>Rational(1, 2)</td>
<td>>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))</td>
<td>ComplexMA(1, 1 * pi)</td>
</tr>
<tr>
<td>>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi)</td>
<td>ComplexMA(1, 1 * pi)</td>
<td>>>> ComplexMA(2, 0.5 * pi) * Rational(3, 2)</td>
</tr>
<tr>
<td>ComplexMA(1, 1 * pi)</td>
<td>>>> Rational(3, 14) + Rational(2, 7)</td>
<td>ComplexMA(3, 0.5 * pi)</td>
</tr>
</tbody>
</table>

\[
\text{Rational}(3, 14) + \text{Rational}(2, 7) = \frac{3}{14} + \frac{2}{7}
\]

\[
\text{i} \cdot \text{i} = \text{ComplexMA}(1, 1 \cdot \pi)
\]

\[
\text{Rational}(3, 14) + \text{Rational}(2, 7) = \frac{3}{14} + \frac{2}{7}
\]

\[
\text{i} \cdot \text{i} = \text{ComplexMA}(1, 1 \cdot \pi)
\]

\[
\frac{1}{2} + (0.5 + 2 \cdot \text{i})
\]

\[
2 \cdot \text{i} \cdot \frac{3}{2}
\]
Special Method Names
Special Method Names in Python

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__ Method invoked automatically when an object is constructed
__repr__ Method invoked to display an object as a string
__add__ Method invoked to add one object to another
__bool__ Method invoked to convert an object to True or False

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

>>> zero, one, two = 0, 1, 2
>>> one.__add__(two)
3
>>> zero.__bool__(), one.__bool__()
(False, True)
Special Methods

Adding instances of user-defined classes invokes the __add__ method

```python
class Number:
    """A number."""
    def __add__(self, other):
        return self.add(other)
    def __mul__(self, other):
        return self.mul(other)

>>> Rational(1, 3) + Rational(1, 6)
Rational(1, 2)
```

We can also __add__ complex numbers, even with multiple representations (Demo)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names
Type Dispatching
The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need access to the implementation of two different abstractions

Rational numbers as numerators & denominators & Complex numbers as two-dimensional vectors

def add_complex_and_rational(c, r):
 """Return c + r for complex c and rational r."""
 return ComplexRI(c.real + r.numer/r.denom, c.imag)
Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid.

Rational.type_tag = "rat"
Complex.type_tag = "com"

class Number:
 def __add__(self, other):
 if self.type_tag == other.type_tag:
 return self.add(other)
 elif (self.type_tag, other.type_tag) in self.adders:
 return self.cross_apply(other, self.adders)

 def cross_apply(self, other, cross_fns):
 cross_fn = cross_fns[(self.type_tag, other.type_tag)]
 return cross_fn(self, other)

 adders = {("com", "rat"): add_complex_and_rational,
 ("rat", "com"): add_rational_and_complex}

(Demo)
Type Dispatching Analysis
Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to the cross-type function dictionaries.

\[
\text{Number.adders}[(\text{tag0}, \text{tag1})] = \text{add_tag0_and_tag1}
\]

Question: How many **cross-type implementations** are required for \(m \) types and \(n \) operations?

\[
\begin{array}{cccccc}
 m & n & m \cdot n & m^2 \cdot n & m^2 \cdot n^2 \\
\end{array}
\]

\[
m \cdot (m - 1) \cdot n
\]
Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to the cross-type function dictionaries.

<table>
<thead>
<tr>
<th>Arg 1</th>
<th>Arg 2</th>
<th>Add</th>
<th>Multiply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex</td>
<td>Complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rational</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rational</td>
<td>Complex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Type Coercion
Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

```python
def rational_to_complex(r):
    """Return complex equal to rational."""
    return ComplexRI(r.numer/r.denom, 0)
```

Question: Can any numeric type be coerced into any other?

Question: Can any two numeric types be coerced into a common type?

Question: Is coercion exact?
Applying Operators with Coercion

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):
 if self.type_tag == other.type_tag:
 return self, other
 elif (self.type_tag, other.type_tag) in self.coercions:
 return (self.coerce_to(other.type_tag), other)
 elif (other.type_tag, self.type_tag) in self.coercions:
 return (self, other.coerce_to(self.type_tag))

 def coerce_to(self, other_tag):
 coercion_fn = self.coercions[(self.type_tag, other_tag)]
 return coercion_fn(self)

coercions = {('rat', 'com'): rational_to_complex}

(Demo)
Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

<table>
<thead>
<tr>
<th>Arg 1</th>
<th>Arg 2</th>
<th>Add</th>
<th>Multiply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex</td>
<td>Complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rational</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex</td>
<td>Rational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rational</td>
<td>Complex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Coerce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex</td>
<td>Rational</td>
<td></td>
</tr>
<tr>
<td>Rational</td>
<td>Complex</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Add</th>
<th>Multiply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rational</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>