Announcements

• Project 3 due Thursday 3/12 @ 11:59pm
 ▪ Project party on Tuesday 3/10 5pm–6:30pm in 2050 VLSB
 ▪ Bonus point for early submission by Wednesday 3/11

• Guerrilla section this weekend on recursive data (linked lists and trees)

• Homework 6 due Monday 3/16 @ 11:59pm

• Midterm 2 is on Thursday 3/19 7pm–9pm
 ▪ Fill out conflict form if you cannot attend due to a course conflict
Time
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

```python
def factors(n):
    Slow: Test each $k$ from 1 through $n$

    Fast: Test each $k$ from 1 to square root $n$
    For every $k$, $n/k$ is also a factor!
```

<table>
<thead>
<tr>
<th>Time (number of divisions)</th>
</tr>
</thead>
</table>

n

Greatest integer less than \sqrt{n}

(Demo)
Space
The Consumption of Space

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:

• Environments for any function calls currently being evaluated

• Parent environments of functions named in active environments

(Demo)

Interactive Diagram
Assume we have reached this step.
Fibonacci Space Consumption

Assume we have reached this step

Has an active environment
Can be reclaimed
Hasn't yet been created

Assume we have reached this step
Order of Growth
Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

\[n: \text{ size of the problem} \]

\[R(n): \text{ measurement of some resource used (time or space)} \]

\[R(n) = \Theta(f(n)) \]

means that there are positive constants \(k_1 \) and \(k_2 \) such that

\[k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n) \]

for all \(n \) larger than some minimum \(m \)
Counting Factors

Number of operations required to count the factors of n using factors_fast is $\Theta(\sqrt{n})$

To check the lower bound, we choose $k_1 = 1$:

- Statements outside the `while`: 4 or 5
- Statements within the `while` (including header): 3 or 4
- `while` statement iterations: between $\sqrt{n} - 1$ and \sqrt{n}
- Total number of statements executed: at least $4 + 3(\sqrt{n} - 1)$

To check the upper bound

- Maximum statements executed: $5 + 4\sqrt{n}$
- Maximum operations required per statement: some p
- We choose $k_2 = 5p$ and $m = 25$
Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time.

Problem: How many factors does a positive integer \(n \) have?

A factor \(k \) of \(n \) is a positive integer that evenly divides \(n \).

```python
def factors(n):
    Slow: Test each \( k \) from 1 through \( n \)
          \[ \Theta(n) \] \[ \Theta(1) \]

    Fast: Test each \( k \) from 1 to square root \( n \)
           For every \( k \), \( n/k \) is also a factor!
          \[ \Theta(\sqrt{n}) \] \[ \Theta(1) \]
```

Assumption: integers occupy a fixed amount of space.
Exponentiation
Exponentiation

Goal: one more multiplication lets us double the problem size

```python
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)

def square(x):
    return x**x

def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)
```

\[
b^n = \begin{cases}
1 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise}
\end{cases}
\]

\[
b^n = \begin{cases}
1 & \text{if } n = 0 \\
(b^{\frac{1}{2}n})^2 & \text{if } n \text{ is even} \\
 b \cdot b^{n-1} & \text{if } n \text{ is odd}
\end{cases}
\]

(Demo)
Exponentiation

Goal: one more multiplication lets us double the problem size

| def exp(b, n): |
|---|---|
| if n == 0: |
| return 1 |
| else: |
| return b * exp(b, n-1) |

| def square(x): |
|---|---|
| return x**x |

| def exp_fast(b, n): |
|---|---|
| if n == 0: |
| return 1 |
| elif n % 2 == 0: |
| return square(exp_fast(b, n//2)) |
| else: |
| return b * exp_fast(b, n-1) |

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Comparing Orders of Growth
Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process

\[\Theta(n) \quad \Theta(500 \cdot n) \quad \Theta\left(\frac{1}{500} \cdot n\right) \]

Logarithms: The base of a logarithm does not affect the order of growth of a process

\[\Theta(\log_2 n) \quad \Theta(\log_{10} n) \quad \Theta(\ln n) \]

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

\[
\text{def overlap}(a, b):
\text{count} = 0
\text{for} \text{ item in a:}
\text{ if item in b:}
\text{ count } += 1
\text{return count}
\]

If a and b are both length n, then overlap takes \(\Theta(n^2)\) steps

Lower-order terms: The fastest-growing part of the computation dominates the total

\[\Theta(n^2) \quad \Theta(n^2 + n) \quad \Theta(n^2 + 500 \cdot n + \log_2 n + 1000) \]
Comparing orders of growth (n is the problem size)

- $\Theta(b^n)$: Exponential growth. Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$.
 - Incrementing the problem scales $R(n)$ by a factor.

- $\Theta(n^2)$: Quadratic growth. E.g., overlap.
 - Incrementing n increases $R(n)$ by the problem size n.

- $\Theta(n)$: Linear growth. E.g., slow factors or exp.

- $\Theta(\sqrt{n})$: Square root growth. E.g., factors_fast.

- $\Theta(\log n)$: Logarithmic growth. E.g., exp_fast.
 - Doubling the problem only increments $R(n)$.

- $\Theta(1)$: Constant. The problem size doesn't matter.