61A Lecture 26

Friday, April 3
Announcements

• Guerrilla Section 5 this weekend on Scheme & functional programming
Announcements

- Guerrilla Section 5 this weekend on Scheme & functional programming
 - Sunday 4/5 12:00pm – 2:30pm in 271 Soda
Announcements

• Guerrilla Section 5 this weekend on Scheme & functional programming
 Sunday 4/5 12:00pm – 2:30pm in 271 Soda
• Homework 7 due Wednesday 4/8 @ 11:59pm
Announcements

• Guerrilla Section 5 this weekend on Scheme & functional programming
 ▪ Sunday 4/5 12:00pm – 2:30pm in 271 Soda
• Homework 7 due Wednesday 4/8 @ 11:59pm
 ▪ Homework party Tuesday 4/7 5pm–6:30pm in 2050 VLSB
Announcements

• Guerrilla Section 5 this weekend on Scheme & functional programming
 • Sunday 4/5 12:00pm – 2:30pm in 271 Soda
• Homework 7 due Wednesday 4/8 @ 11:59pm
 • Homework party Tuesday 4/7 5pm-6:30pm in 2050 VLSB
• Quiz 3 released Tuesday 4/7 & due Thursday 4/9 @ 11:59pm
Announcements

• Guerrilla Section 5 this weekend on Scheme & functional programming
 ▪ Sunday 4/5 12:00pm – 2:30pm in 271 Soda
• Homework 7 due Wednesday 4/8 @ 11:59pm
 ▪ Homework party Tuesday 4/7 5pm–6:30pm in 2050 VLSB
• Quiz 3 released Tuesday 4/7 & due Thursday 4/9 @ 11:59pm
• Project 1, 2, & 3 composition revisions due Friday 4/13 @ 11:59pm
Announcements

• Guerrilla Section 5 this weekend on Scheme & functional programming
 ▪ Sunday 4/5 12:00pm - 2:30pm in 271 Soda
• Homework 7 due Wednesday 4/8 @ 11:59pm
 ▪ Homework party Tuesday 4/7 5pm-6:30pm in 2050 VLSB
• Quiz 3 released Tuesday 4/7 & due Thursday 4/9 @ 11:59pm
• Project 1, 2, & 3 composition revisions due Friday 4/13 @ 11:59pm
• Please check your grades on glookup and request regrades for mistakes
Announcements

• Guerrilla Section 5 this weekend on Scheme & functional programming
 ▪ Sunday 4/5 12:00pm – 2:30pm in 271 Soda
• Homework 7 due Wednesday 4/8 @ 11:59pm
 ▪ Homework party Tuesday 4/7 5pm-6:30pm in 2050 VLSB
• Quiz 3 released Tuesday 4/7 & due Thursday 4/9 @ 11:59pm
• Project 1, 2, & 3 composition revisions due Friday 4/13 @ 11:59pm
• Please check your grades on glookup and request regrades for mistakes
 ▪ http://cs61a.org/regrades.html
Programming Languages
Programming Languages
Programming Languages

A computer typically executes programs written in many different programming languages.
Programming Languages

A computer typically executes programs written in many different programming languages.

Machine languages: statements are interpreted by the hardware itself.
Programming Languages

A computer typically executes programs written in many different programming languages.

Machine languages: statements are interpreted by the hardware itself

- A fixed set of instructions invoke operations implemented by the circuitry of the central processing unit (CPU)
Programming Languages

A computer typically executes programs written in many different programming languages.

Machine languages: statements are interpreted by the hardware itself

- A fixed set of instructions invoke operations implemented by the circuitry of the central processing unit (CPU)
- Operations refer to specific hardware memory addresses; no abstraction mechanisms
Programming Languages

A computer typically executes programs written in many different programming languages.

Machine languages: statements are interpreted by the hardware itself
- A fixed set of instructions invoke operations implemented by the circuitry of the central processing unit (CPU)
- Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or compiled (translated) into another language.
Programming Languages

A computer typically executes programs written in many different programming languages

Machine languages: statements are interpreted by the hardware itself
- A fixed set of instructions invoke operations implemented by the circuitry of the central processing unit (CPU)
- Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or compiled (translated) into another language
- Provide means of abstraction such as naming, function definition, and objects
Programming Languages

A computer typically executes programs written in many different programming languages

Machine languages: statements are interpreted by the hardware itself
 - A fixed set of instructions invoke operations implemented by the circuitry of the central processing unit (CPU)
 - Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or compiled (translated) into another language
 - Provide means of abstraction such as naming, function definition, and objects
 - Abstract away system details to be independent of hardware and operating system
Programming Languages

A computer typically executes programs written in many different programming languages

Machine languages: statements are interpreted by the hardware itself

- A fixed set of instructions invoke operations implemented by the circuitry of the central processing unit (CPU)
- Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or compiled (translated) into another language

- Provide means of abstraction such as naming, function definition, and objects
- Abstract away system details to be independent of hardware and operating system

```python
Python 3

def square(x):
    return x * x
```
Programming Languages

A computer typically executes programs written in many different programming languages.

Machine languages: statements are interpreted by the hardware itself

- A fixed set of instructions invoke operations implemented by the circuitry of the central processing unit (CPU)
- Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or compiled (translated) into another language

- Provide means of abstraction such as naming, function definition, and objects
- Abstract away system details to be independent of hardware and operating system

```python
def square(x):
    return x * x
```

Python 3 Byte Code

```
LOAD_FAST                0 (x)
LOAD_FAST                0 (x)
BINARY_MULTIPLY
RETURN_VALUE
```
A computer typically executes programs written in many different programming languages.

Machine languages: statements are interpreted by the hardware itself
- A fixed set of instructions invoke operations implemented by the circuitry of the central processing unit (CPU)
- Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or compiled (translated) into another language
- Provide means of abstraction such as naming, function definition, and objects
- Abstract away system details to be independent of hardware and operating system

```python
def square(x):
    return x * x

from dis import dis
dis(square)
```

Python 3 Byte Code

```
LOAD_FAST                0 (x)
LOAD_FAST                0 (x)
BINARY_MULTIPLY
RETURN_VALUE
```
Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular type of application or problem domain.
Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular type of application or problem domain.

Type of application: Erlang was designed for concurrent programs. It has built-in elements for expressing concurrent communication. It is used, for example, to implement chat servers with many simultaneous connections.
Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular type of application or problem domain.

Type of application: Erlang was designed for concurrent programs. It has built-in elements for expressing concurrent communication. It is used, for example, to implement chat servers with many simultaneous connections.

Problem domain: The MediaWiki mark-up language was designed for generating static web pages. It has built-in elements for text formatting and cross-page linking. It is used, for example, to create Wikipedia pages.
Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular type of application or problem domain.

Type of application: Erlang was designed for concurrent programs. It has built-in elements for expressing concurrent communication. It is used, for example, to implement chat servers with many simultaneous connections.

Problem domain: The MediaWiki mark-up language was designed for generating static web pages. It has built-in elements for text formatting and cross-page linking. It is used, for example, to create Wikipedia pages.

A programming language has:
Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular type of application or problem domain

Type of application: Erlang was designed for concurrent programs. It has built-in elements for expressing concurrent communication. It is used, for example, to implement chat servers with many simultaneous connections

Problem domain: The MediaWiki mark-up language was designed for generating static web pages. It has built-in elements for text formatting and cross-page linking. It is used, for example, to create Wikipedia pages

A programming language has:

- **Syntax:** The legal statements and expressions in the language
A powerful form of abstraction is to define a new language that is tailored to a particular type of application or problem domain.

Type of application: Erlang was designed for concurrent programs. It has built-in elements for expressing concurrent communication. It is used, for example, to implement chat servers with many simultaneous connections.

Problem domain: The MediaWiki mark-up language was designed for generating static web pages. It has built-in elements for text formatting and cross-page linking. It is used, for example, to create Wikipedia pages.

A programming language has:

- **Syntax:** The legal statements and expressions in the language
- **Semantics:** The execution/evaluation rule for those statements and expressions
A powerful form of abstraction is to define a new language that is tailored to a particular type of application or problem domain

Type of application: Erlang was designed for concurrent programs. It has built-in elements for expressing concurrent communication. It is used, for example, to implement chat servers with many simultaneous connections.

Problem domain: The MediaWiki mark-up language was designed for generating static web pages. It has built-in elements for text formatting and cross-page linking. It is used, for example, to create Wikipedia pages.

A programming language has:

- **Syntax:** The legal statements and expressions in the language
- **Semantics:** The execution/evaluation rule for those statements and expressions

To create a new programming language, you either need a:
Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular type of application or problem domain.

Type of application: Erlang was designed for concurrent programs. It has built-in elements for expressing concurrent communication. It is used, for example, to implement chat servers with many simultaneous connections.

Problem domain: The MediaWiki mark-up language was designed for generating static web pages. It has built-in elements for text formatting and cross-page linking. It is used, for example, to create Wikipedia pages.

A programming language has:

- **Syntax:** The legal statements and expressions in the language.
- **Semantics:** The execution/evaluation rule for those statements and expressions.

To create a new programming language, you either need a:

- **Specification:** A document describe the precise syntax and semantics of the language.
Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular type of application or problem domain

Type of application: Erlang was designed for concurrent programs. It has built-in elements for expressing concurrent communication. It is used, for example, to implement chat servers with many simultaneous connections

Problem domain: The MediaWiki mark-up language was designed for generating static web pages. It has built-in elements for text formatting and cross-page linking. It is used, for example, to create Wikipedia pages

A programming language has:

- **Syntax:** The legal statements and expressions in the language
- **Semantics:** The execution/evaluation rule for those statements and expressions

To create a new programming language, you either need a:

- **Specification:** A document describe the precise syntax and semantics of the language
- **Canonical Implementation:** An interpreter or compiler for the language
Parsing
Parsing

A Parser takes text and returns an expression
A Parser takes text and returns an expression
A Parser takes text and returns an expression
Parsing

A Parser takes text and returns an expression
A Parser takes text and returns an expression
A Parser takes text and returns an expression

\[
'(+ 1)
\]

\[
'(- 23)
\]

\[
'(* 4 5.6)
\]
A Parser takes text and returns an expression

A diagram shows the process:

- **Text**
 - '(+ 1'
 - ' (- 23)'
 - ' (* 4 5.6))'

- **Lexical analysis**
- **Tokens**
- **Syntactic analysis**
- **Expression**
A Parser takes text and returns an expression

```
'(+ 1'
'   (- 23)'
'   (* 4 5.6))'
```

Lexical analysis

Tokens

Syntactic analysis

Expression
A Parser takes text and returns an expression

```
(+ 1
   (- 23)
   (* 4 5.6))
```

- **Lexical analysis**
 - Text: `'(+ 1'
 - Tokens: `'(, '+', 1`

- **Syntactic analysis**
 - Tokens: `'(, '+', 1`
 - Expression: `'(+ 1`

- **Expression**
 - Expression: `'(+ 1`
Parsing

A Parser takes text and returns an expression

```
'( + 1
   (- 23)
   (* 4 5.6))'
```

Lexical analysis

Tokens

Syntactic analysis

Expression
A Parser takes text and returns an expression

```
(+ 1
  (- 23)
  (* 4 5.6))
```
A Parser takes text and returns an expression

Text

Lexical analysis

Tokens

Syntactic analysis

Expression

'(+ 1'

'(', '+', 1

'(- 23)'

'(', '-', 23, ')'

'(* 4 5.6))'

'(', '*', 4, 5.6, ')', ')

'(',
A Parser takes text and returns an expression

"(+ 1" "(- 23)" "(* 4 5.6))"
Parsing

A Parser takes text and returns an expression

- **Lexical analysis**
 - Text: `'(+ 1' '(- 23)' '(* 4 5.6))'`
 - Tokens: `'(', '+', 1 ('
 '(', '-', 23, ')'
 '(', '*', 4, 5.6, ')', ')')`'

- **Syntactic analysis**

- **Expression**

 • Iterative process
A Parser takes text and returns an expression

- **Lexical analysis**
 - Tokens
 - Syntactic analysis

- Iterative process
- Checks for malformed tokens

Text: `'(+ 1' '(- 23)' '(* 4 5.6))'`

Expression: `(+ 1 '(- 23)' '(* 4 5.6))'
Parsing

A Parser takes text and returns an expression

Lexical analysis

Text

Tokens

Syntactic analysis

Expression

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
Parsing

A Parser takes text and returns an expression

Text

Lexical analysis

Tokens

Syntactic analysis

Expression

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time

'(+ 1'
'(− 23)
'(* 4 5.6)'

'('+', 1
'(−', '−', 23, ')
'(∗', '∗', 4, 5.6, ')', ')'
Parsing

A Parser takes text and returns an expression

Text

Lexical analysis

Tokens

Syntactic analysis

Expression

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time
Parsing

A Parser takes text and returns an expression

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time
Parsing

A Parser takes text and returns an expression

- Iterative process
- Checks for malformed tokens
- Determines types of tokens
- Processes one line at a time
A Parser takes text and returns an expression

- **Lexical analysis**
 - '(+ 1')
 - '(- 23)
 - '(* 4 5.6)'

- **Tokens**
 - '(' ' ' '+ ' 1
 - '(' ' ' '-' 23 ' ' ')
 - '(' ' ' '*' 4 5.6 ' ' ')
 - ')

- **Syntactic analysis**
 - Pair('+', Pair(1, ...))

- **Expression**
 - printed as
 - (+ 1 (- 23) (* 4 5.6))

- **Iterative process**
- Checks for malformed tokens
- Determines types of tokens
- Processes one line at a time

- **Tree-recursive process**
A Parser takes text and returns an expression.

Lexical analysis
- Iterative process
- Checks for malformed tokens
- Determines types of tokens
- Processes one line at a time

Syntactic analysis
- Tree-recursive process
- Balances parentheses

Text: `('+ 1' '(- 23)' '(* 4 5.6)')`

Tokens: `('+', '+', 1 '(', '+', 23, ')') '(', '+', 4, 5.6, ')', '}'`

Expression: `Pair('+', Pair(1, ...))`

Printed as: `(+ 1 (- 23) (* 4 5.6))`
A Parser takes text and returns an expression.

Lexical analysis
- Iterative process
- Checks for malformed tokens
- Determines types of tokens
- Processes one line at a time

Syntactic analysis
- Tree-recursive process
- Balances parentheses
- Returns tree structure

Text: `(+ 1 (- 23) (* 4 5.6))`

Tokens:
- `('+', 1`
- `(' -', 23, ')'`
- `(' *', 4, 5.6, ')', ')'`

Expression: `Pair('+', Pair(1, ...))`

Printed as: `(+ 1 (- 23) (* 4 5.6))`
Parsing

A Parser takes text and returns an expression

- Iterative process
- Checks for malformed tokens
- Determines types of tokens
- Processes one line at a time

- Tree-recursive process
- Balances parentheses
- Returns tree structure
- Processes multiple lines
Recursive Syntactic Analysis
Recursive Syntactic Analysis

A predictive recursive descent parser inspects only k tokens to decide how to proceed, for some fixed k.
Recursive Syntactic Analysis

A predictive recursive descent parser inspects only k tokens to decide how to proceed, for some fixed k

Can English be parsed via predictive recursive descent?
Recursive Syntactic Analysis

A predictive recursive descent parser inspects only k tokens to decide how to proceed, for some fixed k

Can English be parsed via predictive recursive descent?

The horse raced past the barn fell.
Recursive Syntactic Analysis

A predictive recursive descent parser inspects only k tokens to decide how to proceed, for some fixed k

Can English be parsed via predictive recursive descent?

The horse-faced past the barn fell.

ridden
Recursive Syntactic Analysis

A predictive recursive descent parser inspects only k tokens to decide how to proceed, for some fixed k.

Can English be parsed via predictive recursive descent?

The horse-faced past the barn fell.

\[\text{ridden} \]

\(\text{(that was)} \)
Recursive Syntactic Analysis

A predictive recursive descent parser inspects only k tokens to decide how to proceed, for some fixed k.

Can English be parsed via predictive recursive descent?

```
sentence subject

The horse-ridden past the barn fell.

(that was)
```
Reading Scheme Lists

A Scheme list is written as elements in parentheses:
Reading Scheme Lists

A Scheme list is written as elements in parentheses:

(\text{element}_0 \; \text{element}_1 \; ... \; \text{element}_n)
Reading Scheme Lists

A Scheme list is written as elements in parentheses:

\((\langle\text{element}_0\rangle \ \langle\text{element}_1\rangle \ \cdots \ \langle\text{element}_n\rangle)\)

Each \langle\text{element}\rangle can be a combination or primitive
Reading Scheme Lists

A Scheme list is written as elements in parentheses:

\((<\text{element}_0> \ <\text{element}_1> \ ... \ <\text{element}_n>)\)

Each \(<\text{element}>\) can be a combination or primitive

\((+ \ (* \ 3 \ (+ \ (* \ 2 \ 4) \ (+ \ 3 \ 5))) \ (+ \ (- \ 10 \ 7) \ 6)) \)
Reading Scheme Lists

A Scheme list is written as elements in parentheses:

(<element_0> <element_1> ... <element_n>)

Each <element> can be a combination or primitive

(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))

The task of parsing a language involves coercing a string representation of an expression to the expression itself
Reading Scheme Lists

A Scheme list is written as elements in parentheses:

\((\text{<element}_0\ \text{<element}_1\ ...\ \text{<element}_n>)\)

Each <element> can be a combination or primitive

\((+\ (*\ 3\ (+\ (*\ 2\ 4)\ (+\ 3\ 5)))\ (+\ (-\ 10\ 7)\ 6))\)

The task of parsing a language involves coercing a string representation of an expression to the expression itself

Parsers must validate that expressions are well-formed
Reading Scheme Lists

A Scheme list is written as elements in parentheses:

\[(\langle element_0 \rangle \ \langle element_1 \rangle \ ... \ \langle element_n \rangle)\]

Each \langle element \rangle can be a combination or primitive

\[(+ \ (* \ 3 \ (+ \ (* \ 2 \ 4) \ (+ \ 3 \ 5))) \ (+ \ (- \ 10 \ 7) \ 6))\]

The task of parsing a language involves coercing a string representation of an expression to the expression itself

Parsers must validate that expressions are well-formed

(Demo)
http://composingprograms.com/examples/scalc/scheme_reader.py.html
Reading Scheme Lists

A Scheme list is written as elements in parentheses:

\[(<\text{element}_0> \ <\text{element}_1> \ ... \ <\text{element}_n>) \]

Each \(<\text{element}>\) can be a combination or primitive

\[(+ \ (* \ 3 \ (+ \ (* \ 2 \ 4) \ (+ \ 3 \ 5))) \ (+ \ (- \ 10 \ 7) \ 6)) \]

The task of parsing a language involves coercing a string representation of an expression to the expression itself

Parsers must validate that expressions are well-formed

(Demo)

http://composingprograms.com/examples/scalc/scheme_reader.py.html
Reading Scheme Lists

A Scheme list is written as elements in parentheses:

\[
(\text{<element}_0 \ <\text{element}_1 \ \ldots \ <\text{element}_n>)
\]

Each <element> can be a combination or primitive

\[
(+ \ (\ast \ 3 \ (+ \ (\ast \ 2 \ 4) \ (+ \ 3 \ 5))) \ (+ \ (- \ 10 \ 7) \ 6))
\]

The task of parsing a language involves coercing a string representation of an expression to the expression itself

Parsers must validate that expressions are well-formed

(Demo)

http://composingprograms.com/examples/scalc/scheme_reader.py.html
Reading Scheme Lists

A Scheme list is written as elements in parentheses:

\[(<element_0> <element_1> \ldots <element_n>)\]

Each \(<element>\) can be a combination or primitive

\[(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))\]

The task of parsing a language involves coercing a string representation of an expression to the expression itself.

Parsers must validate that expressions are well-formed

(Demo)

http://composingprograms.com/examples/scalc/scheme_reader.py.html
Syntactic Analysis
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested.

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression.
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested

Each call to scheme_read consumes the input tokens for exactly one expression

Base case: symbols and numbers
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression.

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them.
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression:

```
('+', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')
```

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression:

```
'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')
```

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression.

```
'(+', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')
```

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them.
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression:

```
('(' , '+' , 1 , '(' , '-' , 23 , ')' , '(' , '*' , 4 , 5.6 , ')' , ')')
```

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them.
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression.

```
'( , ' + ', 1, '( , ' - ', 23, ' )', '( , ' * ', 4, 5.6, ' )', ' )'
```

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression.

```
'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')
```

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them.
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested

Each call to scheme_read consumes the input tokens for exactly one expression

```
'( ', '+', 1, '( ', '- ', 23, ' )', ' ( ', '* ', 4, 5.6, ' )', ' )'
```

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested

Each call to scheme_read consumes the input tokens for exactly one expression

'('+ 1, '(' '-', 23, ')', '(' '*', 4, 5.6, ')', ')

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them
Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be nested

Each call to scheme_read consumes the input tokens for exactly one expression

```
'(+, 1, ('-, 23, ')), ('*, 4, 5.6, '))`
```

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

(Demo)
Calculator

(Demo)
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.

```python
class Pair:
    """A Pair has two instance attributes: first and second.
    For a Pair to be a well-formed list, second is either a well-formed list or nil.
    Some methods only apply to well-formed lists."""

    def __init__(self, first, second):
        self.first = first
        self.second = second
```
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.

class Pair:
 """A Pair has two instance attributes:
 first and second.
 For a Pair to be a well-formed list,
 second is either a well-formed list or nil.
 Some methods only apply to well-formed lists.
 """
 def __init__(self, first, second):
 self.first = first
 self.second = second

>>> s = Pair(1, Pair(2, Pair(3, nil)))
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.

class Pair:
 """A Pair has two instance attributes:
 first and second.
 For a Pair to be a well-formed list,
 second is either a well-formed list or nil.
 Some methods only apply to well-formed lists.
 """
 def __init__(self, first, second):
 self.first = first
 self.second = second

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.

```python
class Pair:
    """A Pair has two instance attributes: first and second.

For a Pair to be a well-formed list, second is either a well-formed list or nil.
Some methods only apply to well-formed lists.
"""
    def __init__(self, first, second):
        self.first = first
        self.second = second

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
>>> len(s)
3
```
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.

```python
class Pair:
    '''A Pair has two instance attributes: first and second.
    For a Pair to be a well-formed list, second is either a well-formed list or nil.
    Some methods only apply to well-formed lists.
    '''
    def __init__(self, first, second):
        self.first = first
        self.second = second

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
>>> len(s)
3
>>> print(Pair(1, 2))
(1 . 2)
```
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.

class Pair:
 """A Pair has two instance attributes: first and second.
 For a Pair to be a well-formed list, second is either a well-formed list or nil. Some methods only apply to well-formed lists."
 def __init__(self, first, second):
 self.first = first
 self.second = second

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
>>> len(s)
3
>>> print(Pair(1, 2))
(1 . 2)
>>> print(Pair(1, Pair(2, 3)))
(1 2 . 3)
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.

```python
class Pair:
    '''A Pair has two instance attributes: first and second.
    For a Pair to be a well-formed list, second is either a well-formed list or nil. Some methods only apply to well-formed lists.
    '''
    def __init__(self, first, second):
        self.first = first
        self.second = second

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
>>> len(s)
3
>>> print(Pair(1, 2))
(1 . 2)
>>> print(Pair(1, Pair(2, 3)))
(1 2 . 3)
>>> len(Pair(1, Pair(2, 3)))
Traceback (most recent call last):
  ...TypeError: length attempted on improper list
```
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.

class Pair:
 """A Pair has two instance attributes: first and second.
 For a Pair to be a well-formed list, second is either a well-formed list or nil.
 Some methods only apply to well-formed lists."""
 def __init__(self, first, second):
 self.first = first
 self.second = second

Scheme expressions are represented as Scheme lists! Source code is data
The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is either a list or nil.

class Pair:
 """A Pair has two instance attributes: first and second.
 For a Pair to be a well-formed list, second is either a well-formed list or nil. Some methods only apply to well-formed lists."

def __init__(self, first, second):
 self.first = first
 self.second = second

Scheme expressions are represented as Scheme lists! Source code is data

(Demo)
Calculator Syntax
Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)
Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2, −4, 5.6
The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2, −4, 5.6

A call expression is a combination that begins with an operator (+, −, *, /) followed by 0 or more expressions: (+ 1 2 3), (/ 3 (+ 4 5))
The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2, -4, 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0 or more expressions: (+ 1 2 3), (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.
Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2, -4, 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0 or more expressions: (+ 1 2 3), (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

```
Expression

(* 3
  (+ 4 5)
  (* 6 7 8))
```
Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2, −4, 5.6

A call expression is a combination that begins with an operator (+, −, *, /) followed by 0 or more expressions: (+ 1 2 3), (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.
Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2, -4, 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0 or more expressions: (+ 1 2 3), (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

Expression	Expression Tree	Representation as Pairs
(* 3 (+ 4 5) (* 6 7 8)) | ![Expression Tree Image] | ![Representation as Pairs Image]
Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2, −4, 5.6

A call expression is a combination that begins with an operator (+, −, *, /) followed by 0 or more expressions: (+ 1 2 3), (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

Expression	Expression Tree	Representation as Pairs
(* 3
 (+ 4 5)
 (* 6 7 8)) | | ![Expression Tree Diagram](http://xuanji.appspot.com/js-scheme-stk/index.html)
Calculator Semantics
Calculator Semantics

The value of a calculator expression is defined recursively.
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

+ : Sum of the arguments
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.
- **+**: Sum of the arguments
- **\(*\)**: Product of the arguments
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

- `+`: Sum of the arguments
- `*`: Product of the arguments
- `-`: If one argument, negate it. If more than one, subtract the rest from the first.
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

- **+**: Sum of the arguments
- **×**: Product of the arguments
- **−**: If one argument, negate it. If more than one, subtract the rest from the first.
- **/**: If one argument, invert it. If more than one, divide the rest from the first.
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

- **+**: Sum of the arguments
- **×**: Product of the arguments
- **−**: If one argument, negate it. If more than one, subtract the rest from the first.
- **/**: If one argument, invert it. If more than one, divide the rest from the first.

```
Expression

(* 3
  (+ 4 5)
  (* 6 7 8))
```
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

- `+`: Sum of the arguments
- `*`: Product of the arguments
- `-`: If one argument, negate it. If more than one, subtract the rest from the first.
- `/:`: If one argument, invert it. If more than one, divide the rest from the first.

```
 (* 3
  (+ 4 5)
  (* 6 7 8))
```

Expression Tree
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

 +: Sum of the arguments

 *: Product of the arguments

 -: If one argument, negate it. If more than one, subtract the rest from the first.

 /: If one argument, invert it. If more than one, divide the rest from the first.

\[
(* 3 \\
 (+ 4 5) \\
 (* 6 7 8))
\]

Expression Tree

<table>
<thead>
<tr>
<th>Expression</th>
<th>Expression Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>(* 3</td>
<td>*</td>
</tr>
<tr>
<td>(+ 4 5)</td>
<td>+</td>
</tr>
<tr>
<td>(* 6 7 8)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

- **+**: Sum of the arguments
- **∗**: Product of the arguments
- **−**: If one argument, negate it. If more than one, subtract the rest from the first.
- **/**: If one argument, invert it. If more than one, divide the rest from the first.

\[
(*) 3 \\
+ (4 5) \\
(* 6 7 8))
\]

expression tree:

```
           *
          /
         /
        3  + 9
       /
      4  5
    /
   6  7
```

Expression Tree

```
  3  + 9
   /
  4  5
```

Expression

```
  (* 3 \\
   (+ 4 5) \\
   (* 6 7 8))
```
Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.
- `+`: Sum of the arguments
- `*`: Product of the arguments
- `-`: If one argument, negate it. If more than one, subtract the rest from the first.
- `/`: If one argument, invert it. If more than one, divide the rest from the first.

![Expression and Expression Tree Diagram]
Evaluation
The Eval Function
The Eval Function

The eval function computes the value of an expression, which is always a number.
The Eval Function

The eval function computes the value of an expression, which is always a number.

It is a generic function that dispatches on the type of the expression (primitive or call).
The Eval Function

The eval function computes the value of an expression, which is always a number.
It is a generic function that dispatches on the type of the expression (primitive or call).

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Language Semantics</th>
</tr>
</thead>
</table>

The Eval Function

The eval function computes the value of an expression, which is always a number. It is a generic function that dispatches on the type of the expression (primitive or call).

Implementation

```python
def calc_eval(exp):
    if type(exp) in (int, float):
        return exp
    elif isinstance(exp, Pair):
        arguments = exp.second.map(calc_eval)
        return calc_apply(exp.first, arguments)
    else:
        raise TypeError
```

Language Semantics
The Eval Function

The eval function computes the value of an expression, which is always a number.

It is a generic function that dispatches on the type of the expression (primitive or call).

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Language Semantics</th>
</tr>
</thead>
</table>
| def calc_eval(exp):
 if type(exp) in (int, float):
 return exp
 elif isinstance(exp, Pair):
 arguments = exp.second.map(calc_eval)
 return calc_apply(exp.first, arguments)
 else:
 raise TypeError |
| A number evaluates... |
The Eval Function

The eval function computes the value of an expression, which is always a number.

It is a generic function that dispatches on the type of the expression (primitive or call).

Implementation

```python
def calc_eval(exp):
    if type(exp) in (int, float):
        return exp
    elif isinstance(exp, Pair):
        arguments = exp.second.map(calc_eval)
        return calc_apply(exp.first, arguments)
    else:
        raise TypeError
```

Language Semantics

A number evaluates... to itself
The Eval Function

The eval function computes the value of an expression, which is always a number.

It is a generic function that dispatches on the type of the expression (primitive or call).

Implementation

```python
def calc_eval(exp):
    if type(exp) in (int, float):
        return exp
    elif isinstance(exp, Pair):
        arguments = exp.second.map(calc_eval)
        return calc_apply(exp.first, arguments)
    else:
        raise TypeError
```

Language Semantics

- A number evaluates... to itself
- A call expression evaluates...
The Eval Function

The eval function computes the value of an expression, which is always a number.

It is a generic function that dispatches on the type of the expression (primitive or call).

Implementation

def calc_eval(exp):
 if type(exp) in (int, float):
 return exp
 elif isinstance(exp, Pair):
 arguments = exp.second.map(calc_eval)
 return calc_apply(exp.first, arguments)
 else:
 raise TypeError

Language Semantics

A number evaluates...
 to itself

A call expression evaluates...
 to its argument values
The Eval Function

The eval function computes the value of an expression, which is always a number. It is a generic function that dispatches on the type of the expression (primitive or call).

Implementation

```python
def calc_eval(exp):
    if type(exp) in (int, float):
        return exp
    elif isinstance(exp, Pair):
        arguments = exp.second.map(calc_eval)
        return calc_apply(exp.first, arguments)
    else:
        raise TypeError
```

Language Semantics

- **A number evaluates...**
 - to itself
- **A call expression evaluates...**
 - to its argument values
 - combined by an operator
The Eval Function

The eval function computes the value of an expression, which is always a number.

It is a generic function that dispatches on the type of the expression (primitive or call).

Implementation

```python
def calc_eval(exp):
    if type(exp) in (int, float):
        return exp
    elif isinstance(exp, Pair):
        arguments = exp.second.map(calc_eval)
        return calc_apply(exp.first, arguments)
    else:
        raise TypeError
```

Language Semantics

- **A number evaluates...**
 - to itself

- **A call expression evaluates...**
 - to its argument values combined by an operator
The Eval Function

The eval function computes the value of an expression, which is always a number.

It is a generic function that dispatches on the type of the expression (primitive or call).

Implementation

```
def calc_eval(exp):
    if type(exp) in (int, float):
        return exp
    elif isinstance(exp, Pair):
        arguments = exp.second.map(calc_eval)
        return calc_apply(exp.first, arguments)
    else:
        raise TypeError
```

Language Semantics

- **A number evaluates...**
 - to *itself*

- **A call expression evaluates...**
 - to its argument values
 - combined by an operator
The Eval Function

The eval function computes the value of an expression, which is always a number. It is a generic function that dispatches on the type of the expression (primitive or call).

Implementation

```python
def calc_eval(exp):
    if type(exp) in (int, float):
        return exp
    elif isinstance(exp, Pair):
        arguments = exp.second.map(calc_eval)
        return calc_apply(exp.first, arguments)
    else:
        raise TypeError
```

Language Semantics

- **A number evaluates**...
 - to itself
- **A call expression evaluates**...
 - to its argument values combined by an operator

Recursive call returns a number for each operand

```
'+', '-'
'*', '/'
```

'+' and '-' are addition and subtraction operators.

'*' and '/' are multiplication and division operators.
The Eval Function

The eval function computes the value of an expression, which is always a number.

It is a generic function that dispatches on the type of the expression (primitive or call).

Implementation

```python
def calc_eval(exp):
    if type(exp) in (int, float):
        return exp
    elif isinstance(exp, Pair):
        arguments = exp.second.map(calc_eval)
        return calc_apply(exp.first, arguments)
    else:
        raise TypeError
```

Language Semantics

- **A number evaluates**:...
 to itself

- **A call expression evaluates**:...
 to its argument values
 combined by an operator

Recursive call returns a number for each operand

A Scheme list of numbers

A number evaluates...
 to itself

A call expression evaluates...
 to its argument values
 combined by an operator
Applying Built-in Operators
Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values.
Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values.

In calculator, all operations are named by built-in operators: +, −, *, /
Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values.

In calculator, all operations are named by built-in operators: +, −, *, /

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Language Semantics</th>
</tr>
</thead>
</table>

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values.

In calculator, all operations are named by built-in operators: +, −, *, /

Implementation

```python
def calc_apply(operator, args):
    if operator == '+':
        return reduce(add, args, 0)
    elif operator == '-':
        ...
    elif operator == '*':
        ...
    elif operator == '/':
        ...
    else:
        raise TypeError
```

Language Semantics
Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values.

In calculator, all operations are named by built-in operators: +, −, *, /

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Language Semantics</th>
</tr>
</thead>
</table>
| def calc_apply(operator, args):
 if operator == '+':
 return reduce(add, args, 0)
 elif operator == '-':
 ...
 elif operator == '*':
 ...
 elif operator == '/':
 ...
 else:
 raise TypeError | +: |

17
Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values.

In calculator, all operations are named by built-in operators: +, −, *, /

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Language Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>def calc_apply(operator, args):</td>
<td>+:</td>
</tr>
<tr>
<td>if operator == '+':</td>
<td>\textit{Sum of the arguments}</td>
</tr>
<tr>
<td>return reduce(add, args, 0)</td>
<td></td>
</tr>
<tr>
<td>elif operator == '-':</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>elif operator == '*':</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>elif operator == '/':</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>else:</td>
<td></td>
</tr>
<tr>
<td>raise TypeError</td>
<td></td>
</tr>
</tbody>
</table>
Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values.

In calculator, all operations are named by built-in operators: +, −, *, /

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Language Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>def calc_apply(operator, args):</td>
<td></td>
</tr>
<tr>
<td>if operator == '+':</td>
<td></td>
</tr>
<tr>
<td>return reduce(add, args, 0)</td>
<td></td>
</tr>
<tr>
<td>elif operator == '-':</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>elif operator == '*':</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>elif operator == '/':</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>else:</td>
<td></td>
</tr>
<tr>
<td>raise TypeError</td>
<td></td>
</tr>
<tr>
<td>+: Sum of the arguments</td>
<td></td>
</tr>
<tr>
<td>−:</td>
<td></td>
</tr>
<tr>
<td>*:</td>
<td></td>
</tr>
<tr>
<td>/:</td>
<td></td>
</tr>
</tbody>
</table>
Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values.

In calculator, all operations are named by built-in operators: +, −, *, /

Implementation

```python
def calc_apply(operator, args):
    if operator == '+':
        return reduce(add, args, 0)
    elif operator == '-':
        ...
    elif operator == '*':
        ...
    elif operator == '/':
        ...
    else:
        raise TypeError
```

Language Semantics

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Sum of the arguments</td>
</tr>
<tr>
<td>−</td>
<td>...</td>
</tr>
<tr>
<td>*</td>
<td>...</td>
</tr>
<tr>
<td>/</td>
<td>...</td>
</tr>
</tbody>
</table>

(Demo)
Interactive Interpreters
Read-Eval-Print Loop
Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter.
Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter.

1. Print a prompt
Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter.

1. Print a prompt
2. **Read** text input from the user
Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter.

1. Print a prompt
2. Read text input from the user
3. Parse the text input into an expression
Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter.

1. Print a prompt
2. **Read** text input from the user
3. Parse the text input into an expression
4. **Evaluate** the expression
Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter.

1. Print a prompt
2. **Read** text input from the user
3. Parse the text input into an expression
4. **Evaluate** the expression
5. If any errors occur, report those errors, otherwise
Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter.

1. Print a prompt
2. **Read** text input from the user
3. Parse the text input into an expression
4. **Evaluate** the expression
5. If any errors occur, report those errors, otherwise
6. **Print** the value of the expression and repeat
Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter.

1. Print a prompt
2. Read text input from the user
3. Parse the text input into an expression
4. Evaluate the expression
5. If any errors occur, report those errors, otherwise
6. Print the value of the expression and repeat

(Demo)
Raising Exceptions
Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply.
Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply.

Example exceptions
Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply.

Example exceptions

- **Lexical analysis**: The token `2.3.4` raises `ValueError("invalid numeral")`
Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply.

Example exceptions

- **Lexical analysis**: The token 2.3.4 raises ValueError("invalid numeral")
- **Syntactic analysis**: An extra) raises SyntaxError("unexpected token")
Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply.

Example exceptions

- **Lexical analysis:** The token 2.3.4 raises ValueError("invalid numeral")
- **Syntactic analysis:** An extra) raises SyntaxError("unexpected token")
- **Eval:** An empty combination raises TypeError("() is not a number or call expression")
Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply.

Example exceptions

• **Lexical analysis:** The token 2.3.4 raises `ValueError("invalid numeral")`

• **Syntactic analysis:** An extra) raises `SyntaxError("unexpected token")`

• **Eval:** An empty combination raises `TypeError("() is not a number or call expression")`

• **Apply:** No arguments to – raises `TypeError("– requires at least 1 argument")`
Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply.

Example exceptions

- **Lexical analysis**: The token 2.3.4 raises ValueError("invalid numeral")
- **Syntactic analysis**: An extra) raises SyntaxError("unexpected token")
- **Eval**: An empty combination raises TypeError("() is not a number or call expression")
- **Apply**: No arguments to - raises TypeError("- requires at least 1 argument")
Handling Exceptions
Handling Exceptions

An interactive interpreter prints information about each error
Handling Exceptions

An interactive interpreter prints information about each error.

A well-designed interactive interpreter should not halt completely on an error, so that the user has an opportunity to try again in the current environment.
Handling Exceptions

An interactive interpreter prints information about each error.

A well-designed interactive interpreter should not halt completely on an error, so that the user has an opportunity to try again in the current environment.

(Demo)