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Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s. 
(define (length s) 
  (+ 1 (if (null? s) 
           -1 
           (length (cdr s))) ) ) 
!

;; Return the nth Fibonacci number. 
(define (fib n) 
  (define (fib-iter current k) 
    (if (= k n) 
        current 
        (fib-iter (+ current 
                     (fib (- k 1))) 
                  (+ k 1))          ) ) 
  (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v. 
(define (contains s v) 
  (if (null? s) 
      false 
      (if (= v (car s)) 
          true 
          (contains (cdr s) v)))) 
!

;; Return whether s has any repeated elements. 
(define (has-repeat s) 
  (if (null? s) 
      false 
      (if (contains? (cdr s) (car s)) 
          true 
          (has-repeat (cdr s)))       ) )
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