
61A Lecture 28

Friday, November 7

Announcements

2

Announcements

¥Homework 7 due Wednesday 4/8 @ 11:59pm

2

Announcements

¥Homework 7 due Wednesday 4/8 @ 11:59pm

§Homework party Tuesday 4/7 5pm-6:30pm in 2050 VLSB

2

Announcements

¥Homework 7 due Wednesday 4/8 @ 11:59pm

§Homework party Tuesday 4/7 5pm-6:30pm in 2050 VLSB

¥Quiz 2 due Thursday 4/9 @ 11:59pm

2

Announcements

¥Homework 7 due Wednesday 4/8 @ 11:59pm

§Homework party Tuesday 4/7 5pm-6:30pm in 2050 VLSB

¥Quiz 2 due Thursday 4/9 @ 11:59pm

¥Homework 8 due Wednesday 4/15 @ 11:59pm

2

Announcements

¥Homework 7 due Wednesday 4/8 @ 11:59pm

§Homework party Tuesday 4/7 5pm-6:30pm in 2050 VLSB

¥Quiz 2 due Thursday 4/9 @ 11:59pm

¥Homework 8 due Wednesday 4/15 @ 11:59pm

¥Project 1, 2, & 3 composition revisions due Monday 4/13 @ 11:59pm

2

Announcements

¥Homework 7 due Wednesday 4/8 @ 11:59pm

§Homework party Tuesday 4/7 5pm-6:30pm in 2050 VLSB

¥Quiz 2 due Thursday 4/9 @ 11:59pm

¥Homework 8 due Wednesday 4/15 @ 11:59pm

¥Project 1, 2, & 3 composition revisions due Monday 4/13 @ 11:59pm

¥Project 4 due Thursday 4/23 @ 11:59pm (Big!)

2

Scheme Recursive Art Contest: Start Early!

3

Scheme Recursive Art Contest: Start Early!

3

Fall 2012 Featherweight Winner
176 Scheme Tokens!

Scheme Recursive Art Contest: Start Early!

3

Fall 2012 Featherweight Winner
176 Scheme Tokens!

Fall 2013 Heavyweight Winner
1857 Scheme Tokens!

Scheme Recursive Art Contest: Start Early!

3

Fall 2012 Featherweight Winner
176 Scheme Tokens!

Fall 2013 Heavyweight Winner
1857 Scheme Tokens!

Extra lecture on this image: !
Thursday 4/9 5pm in 2050 VLSB

Dynamic Scope

Dynamic Scope

5

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

5

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

5

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

5

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

5

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

5

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

5

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame

5

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame

5

Global frame

f (λ (x) ...)

g (λ (x y) ...)

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame

5

Global frame

f (λ (x) ...)

g (λ (x y) ...)

f1: g [parent=global]

x

y

3

7

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame

5

Global frame

f (λ (x) ...)

g (λ (x y) ...)

f1: g [parent=global]

x

y

3

7

f2: f [parent=global]

x 6

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame
Error: unknown identifier: y

5

Global frame

f (λ (x) ...)

g (λ (x y) ...)

f1: g [parent=global]

x

y

3

7

f2: f [parent=global]

x 6

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame

Dynamic scope : The parent for f's frame is g's frame

Error: unknown identifier: y

5

Global frame

f (λ (x) ...)

g (λ (x y) ...)

f1: g [parent=global]

x

y

3

7

f2: f [parent=global]

x 6

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame

Dynamic scope : The parent for f's frame is g's frame

Error: unknown identifier: y

mu

Special form to create dynamically
scoped procedures (mu special form
only exists in Project 4 Scheme)

5

Global frame

f (λ (x) ...)

g (λ (x y) ...)

f1: g [parent=global]

x

y

3

7

f2: f [parent=global]

x 6

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame

Dynamic scope : The parent for f's frame is g's frame

Error: unknown identifier: y

mu

Special form to create dynamically
scoped procedures (mu special form
only exists in Project 4 Scheme)

5

Global frame

f (λ (x) ...)

g (λ (x y) ...)

μ

f1: g [parent=global]

x

y

3

7

f2: f [parent=global]

x 6

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame

Dynamic scope : The parent for f's frame is g's frame

Error: unknown identifier: y

mu

Special form to create dynamically
scoped procedures (mu special form
only exists in Project 4 Scheme)

5

Global frame

f (λ (x) ...)

g (λ (x y) ...)

μ

f1

f1: g [parent=global]

x

y

3

7

f2: f [parent=global]

x 6

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope !
(or static scope) [You can see what names are in scope by inspecting the definition]

Lexical scope : The parent of a frame is the environment in which a procedure was defined

Dynamic scope : The parent of a frame is the environment in which a procedure was called

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope : The parent for f's frame is the global frame

Dynamic scope : The parent for f's frame is g's frame

Error: unknown identifier: y

13

mu

Special form to create dynamically
scoped procedures (mu special form
only exists in Project 4 Scheme)

5

Global frame

f (λ (x) ...)

g (λ (x y) ...)

μ

f1

f1: g [parent=global]

x

y

3

7

f2: f [parent=global]

x 6

Tail Recursion

Functional Programming

7

Functional Programming

All functions are pure functions.

7

Functional Programming

All functions are pure functions.

No re-assignment and no mutable data types.

7

Functional Programming

All functions are pure functions.

No re-assignment and no mutable data types.

Name-value bindings are permanent.

7

Functional Programming

All functions are pure functions.

No re-assignment and no mutable data types.

Name-value bindings are permanent.

Advantages of functional programming:

7

Functional Programming

All functions are pure functions.

No re-assignment and no mutable data types.

Name-value bindings are permanent.

Advantages of functional programming:

¥ The value of an expression is independent of the order in which sub-expressions are
evaluated.

7

Functional Programming

All functions are pure functions.

No re-assignment and no mutable data types.

Name-value bindings are permanent.

Advantages of functional programming:

¥ The value of an expression is independent of the order in which sub-expressions are
evaluated.

¥ Sub-expressions can safely be evaluated in parallel or on demand (lazily).

7

Functional Programming

All functions are pure functions.

No re-assignment and no mutable data types.

Name-value bindings are permanent.

Advantages of functional programming:

¥ The value of an expression is independent of the order in which sub-expressions are
evaluated.

¥ Sub-expressions can safely be evaluated in parallel or on demand (lazily).

¥ Referential transparency : The value of an expression does not change when we substitute
one of its subexpression with the value of that subexpression.

7

Functional Programming

All functions are pure functions.

No re-assignment and no mutable data types.

Name-value bindings are permanent.

Advantages of functional programming:

¥ The value of an expression is independent of the order in which sub-expressions are
evaluated.

¥ Sub-expressions can safely be evaluated in parallel or on demand (lazily).

¥ Referential transparency : The value of an expression does not change when we substitute
one of its subexpression with the value of that subexpression.

But... no for/while statements! Can we make basic iteration efficient? Yes!

7

Recursion and Iteration in Python

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! * k

8

Recursion and Iteration in Python

def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n)

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! * k

8

Recursion and Iteration in Python

def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n)

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! * k

8

Recursion and Iteration in Python

Time Space

def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n)

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! * k

8

Recursion and Iteration in Python

Time Space

def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n)

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

!(n)

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! * k

8

Recursion and Iteration in Python

Time Space

def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n)

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

!(n) !(n)

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! * k

8

Recursion and Iteration in Python

Time Space

def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n)

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

!(n) !(n)

!(n)

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! * k

8

!(1)

Recursion and Iteration in Python

Time Space

def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n)

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

!(n) !(n)

!(n)

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! * k

8

!(1)

Recursion and Iteration in Python

Time Space

def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n)

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

!(n) !(n)

!(n)

In Python, recursive calls always create new active frames

factorial(n, k) computes: n! * k

8

Tail Recursion

From the Revised7 Report on the Algorithmic Language Scheme:

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

9

!(1)

Time Space

!(n)

Tail Recursion

From the Revised7 Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be properly tail-recursive. This allows the
execution of an iterative computation in constant space, even if the iterative
computation is described by a syntactically recursive procedure."

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

9

!(1)

Time Space

!(n)

Tail Recursion

From the Revised7 Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be properly tail-recursive. This allows the
execution of an iterative computation in constant space, even if the iterative
computation is described by a syntactically recursive procedure."

(define (factorial n k)
 (if (zero? n) k
 (factorial (- n 1)
 (* k n))))

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

9

!(1)

Time Space

!(n)

Tail Recursion

From the Revised7 Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be properly tail-recursive. This allows the
execution of an iterative computation in constant space, even if the iterative
computation is described by a syntactically recursive procedure."

(define (factorial n k)
 (if (zero? n) k
 (factorial (- n 1)
 (* k n))))

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

9

Should use resources like

!(1)

Time Space

!(n)

Tail Recursion

From the Revised7 Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be properly tail-recursive. This allows the
execution of an iterative computation in constant space, even if the iterative
computation is described by a syntactically recursive procedure."

(define (factorial n k)
 (if (zero? n) k
 (factorial (- n 1)
 (* k n))))

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

How? Eliminate the middleman!

9

Should use resources like

!(1)

Time Space

!(n)

Tail Recursion

From the Revised7 Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be properly tail-recursive. This allows the
execution of an iterative computation in constant space, even if the iterative
computation is described by a syntactically recursive procedure."

(define (factorial n k)
 (if (zero? n) k
 (factorial (- n 1)
 (* k n))))

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

How? Eliminate the middleman!

9

Should use resources like

!(1)

Time Space

!(n)

(Demo)

Interactive Diagram

Tail Calls

Tail Calls

11

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

11

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

11

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression

11

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression

• Sub-expressions 2 & 3 in a tail context if expression

11

(define (factorial n k)

 (if (= n 0) k

 (factorial (- n 1)

 (* k n))))

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression

• Sub-expressions 2 & 3 in a tail context if expression

11

(define (factorial n k)

 (if (= n 0) k

 (factorial (- n 1)

 (* k n))))

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression

• Sub-expressions 2 & 3 in a tail context if expression

11

(define (factorial n k)

 (if (= n 0) k

 (factorial (- n 1)

 (* k n))))

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression

• Sub-expressions 2 & 3 in a tail context if expression

11

(define (factorial n k)

 (if (= n 0) k

 (factorial (- n 1)

 (* k n))))

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression

• Sub-expressions 2 & 3 in a tail context if expression

• All non-predicate sub-expressions in a tail context cond

11

(define (factorial n k)

 (if (= n 0) k

 (factorial (- n 1)

 (* k n))))

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression

• Sub-expressions 2 & 3 in a tail context if expression

• All non-predicate sub-expressions in a tail context cond

• The last sub-expression in a tail context and or or

11

(define (factorial n k)

 (if (= n 0) k

 (factorial (- n 1)

 (* k n))))

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression

• Sub-expressions 2 & 3 in a tail context if expression

• All non-predicate sub-expressions in a tail context cond

• The last sub-expression in a tail context and or or

• The last sub-expression in a tail context begin

11

(define (factorial n k)

 (if (= n 0) k

 (factorial (- n 1)

 (* k n))))

Tail Calls

A procedure call that has not yet returned is active. Some procedure calls are tail calls.
A Scheme interpreter should support an unbounded number of active tail calls using only a
constant amount of space.

A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda expression

• Sub-expressions 2 & 3 in a tail context if expression

• All non-predicate sub-expressions in a tail context cond

• The last sub-expression in a tail context and or or

• The last sub-expression in a tail context begin

11

Example: Length of a List

12

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

12

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

 (define (length-iter s n)

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

 (length-iter (cdr s) (+ 1 n))))

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

 (length-iter (cdr s) (+ 1 n))))

 (length-iter s 0))

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

 (length-iter (cdr s) (+ 1 n))))

 (length-iter s 0))

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

 (length-iter (cdr s) (+ 1 n))))

 (length-iter s 0))

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

 (length-iter (cdr s) (+ 1 n))))

 (length-iter s 0))

Example: Length of a List

A call expression is not a tail call if more computation is still required
in the calling procedure

Linear recursive procedures can often be re-written to use tail calls

12

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s))))

Not a tail context

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

 (length-iter (cdr s) (+ 1 n))))

 (length-iter s 0))

Recursive call is a tail call

Eval with Tail Call Optimization

13

Eval with Tail Call Optimization

The return value of the tail call is the return value of the current procedure call

13

Eval with Tail Call Optimization

The return value of the tail call is the return value of the current procedure call

Therefore, tail calls shouldn't increase the environment size

13

Eval with Tail Call Optimization

The return value of the tail call is the return value of the current procedure call

Therefore, tail calls shouldn't increase the environment size

13

(Demo)

Tail Recursion Examples

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Which Procedures are Tail Recursive?

Which of the following procedures run in constant space?

15

!(1)

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))
!

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))))
 (if (= 1 n) 0 (fib-iter 1 2)))

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
!

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

Map and Reduce

Example: Reduce

17

Example: Reduce

(define (reduce procedure s start)

17

Example: Reduce

(define (reduce procedure s start)

(reduce * '(3 4 5) 2)

17

Example: Reduce

(define (reduce procedure s start)

(reduce * '(3 4 5) 2) 120

17

Example: Reduce

(define (reduce procedure s start)

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2))

17

Example: Reduce

(define (reduce procedure s start)

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Reduce

(define (reduce procedure s start)

 (if (null? s) start

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Reduce

(define (reduce procedure s start)

 (if (null? s) start

 (reduce procedure

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Reduce

(define (reduce procedure s start)

 (if (null? s) start

 (reduce procedure

 (cdr s)

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Reduce

(define (reduce procedure s start)

 (if (null? s) start

 (reduce procedure

 (cdr s)

 (procedure start (car s)))))

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Reduce

(define (reduce procedure s start)

 (if (null? s) start

 (reduce procedure

 (cdr s)

 (procedure start (car s)))))

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Reduce

(define (reduce procedure s start)

 (if (null? s) start

 (reduce procedure

 (cdr s)

 (procedure start (car s)))))

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Reduce

(define (reduce procedure s start)

 (if (null? s) start

 (reduce procedure

 (cdr s)

 (procedure start (car s)))))

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Reduce

(define (reduce procedure s start)

 (if (null? s) start

 (reduce procedure

 (cdr s)

 (procedure start (car s)))))

Recursive call is a tail call

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Reduce

(define (reduce procedure s start)

 (if (null? s) start

 (reduce procedure

 (cdr s)

 (procedure start (car s)))))

Recursive call is a tail call

Space depends on what procedure requires

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

17

Example: Map with Only a Constant Number of Frames

18

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nil

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
 r

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
 r
 (reverse-iter (cdr s)

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
 r
 (reverse-iter (cdr s)
 (cons (car s) r))))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
 r
 (reverse-iter (cdr s)
 (cons (car s) r))))
 (reverse-iter s nil))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
 r
 (reverse-iter (cdr s)
 (cons (car s) r))))
 (reverse-iter s nil))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
 r
 (reverse-iter (cdr s)
 (cons (car s) r))))
 (reverse-iter s nil))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
 r
 (reverse-iter (cdr s)
 (cons (car s) r))))
 (reverse-iter s nil))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

Example: Map with Only a Constant Number of Frames

(define (map procedure s)
 (define (map-reverse s m)
 (if (null? s)
 m
 (map-reverse (cdr s)
 (cons (procedure (car s))
 m))))
 (reverse (map-reverse s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s)
 r
 (reverse-iter (cdr s)
 (cons (car s) r))))
 (reverse-iter s nil))

18

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

1

Pair

2

Pair

nils

s

s

4

Pair

3

Pair

(map (lambda (x) (- 5 x)) (list 1 2))

General Computing Machines

An Analogy: Programs Define Machines

20

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

20

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

factorial

20

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

factorial

=

- factorial

*

1

1 1

20

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

factorial

5 =

- factorial

*

1

1 1

20

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

factorial

5 120=

- factorial

*

1

1 1

20

Interpreters are General Computing Machine

21

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

21

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

Scheme
Interpreter5 120

(define (factorial n)
 (if (zero? n) 1 (* n (factorial (- n 1)))))

21

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

Scheme
Interpreter5 120

(define (factorial n)
 (if (zero? n) 1 (* n (factorial (- n 1)))))

Our Scheme interpreter is a universal machine

21

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

Scheme
Interpreter5 120

(define (factorial n)
 (if (zero? n) 1 (* n (factorial (- n 1)))))

Our Scheme interpreter is a universal machine

A bridge between the data objects that are manipulated by our programming language and
the programming language itself

21

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

Scheme
Interpreter5 120

(define (factorial n)
 (if (zero? n) 1 (* n (factorial (- n 1)))))

Our Scheme interpreter is a universal machine

A bridge between the data objects that are manipulated by our programming language and
the programming language itself

Internally, it is just a set of evaluation rules

21

