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1 Control

Control structures direct the flow of logic in a program. For example, conditionals allow
a program to skip sections of code, while iteration allows a program to repeat a section.

1.1 Conditional Statements

Conditional statements let programs execute different lines of code depending on certain
conditions. In Python, we can use the if- elif-else block:

if <conditional expression>:
<suite of statements>

elif <conditional expression>:
<suite of statements>

else:
<suite of statements>

Some notes:

• The else and elif statements are optional.

• You can have any number of elif statements.

• A conditional expression is a Python expression. All that matters for control is
whether its value is a true value or a false value.

• The code that is executed is the suite that is indented under the first if/elif that
has a true conditional expression. If none are true, then the else suite is executed.

• Once one suite is executed, the rest are skipped.
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Note: in Python, there are a few things that are treated as false values:

• The boolean False

• The integer 0

• The value None

• And more. . .
Python also includes boolean operators and, or, and not. These operators are used to
combine and manipulate boolean values.

• not True evaluates to False, and not False evaluates to True.

• True and True evaluates to True, but a false value on either side makes it False.

• False or False evaluates to False, but a true value on either side makes it True.

1.2 Iteration

Iteration lets a program repeat statements multiple times. A common iterative block of
code is the while loop:

while <conditional clause>:
<body of statements>

This block of code states: “while the conditional clause is still True, continue executing
the indented body of statements.” Here is an example:

>>> def countdown(x):
... while x > 0:
... print(x)
... x = x - 1
... print("Blastoff!")
...
>>> countdown(3)
3
2
1
Blastoff!

1.3 Questions

1. Fill in the is prime function, which returns True if n is a prime number and False
otherwise.

Hint: use the % operator: x % y returns the remainder of x when divided by y.
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def is_prime(n):

1.4 Extra Questions

1. Fill in the choose function, which returns the number of ways to choose k items from
n items. Mathematically, choose(n, k) is defined as:

n× (n− 1)× (n− 2)× · · · × (n− k + 1)

k × (k − 1)× (k − 2)× · · · × 2× 1

def choose(n, k):
"""Returns the number of ways to choose K items from

N items.

>>> choose(5, 2)
10
>>> choose(20, 6)
38760
"""
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2 Higher Order Functions

A function that manipulates other functions is called a higher order function (HOF),
which is a function that takes functions as arguments, returns a function, or both.

2.1 Functions as Argument Values

Suppose we want to square or double every integer from 1 to n and print the result as
we go. Fill in the functions square ints and double ints by using the square and
double functions we have defined.

def square(x):
return x * x

def square_ints(n):
"""Print out the square of every integer from 1 to n.
>>> square_ints(3)
1
4
9
"""

def double(x):
return 2 * x

def double_ints(n):
"""Print out the double of every integer from 1 to n.
>>> double_ints(3)
2
4
6
"""

The only difference between square ints and double ints is the function called be-
fore printing (either square or double).
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It would be nice to have a generalized function, transform ints, that took care of
the while loop and the incrementing for us. That way, we could triple ints or
cube ints without repeating so much code:

def square_ints(n):
transform_ints(square, n)

def double_ints(n):
transform_ints(double, n)

def cube(x):
return x * x * x

def cube_ints(n):
transform_ints(cube, n)

2.2 Questions

1. Implement the function transform ints that takes in a function func and a num-
ber n and prints the result of applying that function to each of the first n natural
numbers.

def transform_ints(func, n):
"""Print out all integers from 1 to n with func applied
on them.

>>> def square(x):
... return x * x
>>> transform_ints(square, 3)
1
4
9
"""
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2.3 Functions as Return Values

Often, we will need to write a function that returns another function. One way to do this
is to define a function inside of a function:

def outer(x):
def inner(y):

...
return inner

Note two things:

1. The return value of the outer function is inner. This is where a function returns a
function.

2. In this case, the inner function is defined inside of the outer function. This is a
common pattern, but it is not necessary; we could have defined inner outside of
the outer and still use the same return statement.

2.4 Questions

1. Write a function and add that takes a function f (such that f is a function of one
argument) and a number n as arguments. It should return a function that takes one
argument, and does the same thing as the function f, except also adds n to the result.

def and_add(f, n):
"""Return a new function. This new function takes an
argument x and returns f(x) + n.

>>> def square(x):
... return x * x
>>> new_square = and_add(square, 3)
>>> new_square(4) # 4 * 4 + 3
19
"""
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2. Draw the environment diagram that results from running the following code:

n = 7

def f(x):
n = 8
return x + 1

def g(x):
n = 9
def h():

return x + 1
return h

def f(f, x):
return f(x + n)()

m = f(g, n)

2.5 Extra Questions

1. Implement a function keep ints, which takes in a function cond and a number n,
and only prints a number from 1 to n if calling cond on that number returns True:

def keep_ints(cond, n):
"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):
... # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> keep_ints(is_even, 5)
2
4
"""
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2. The following code has been loaded into the Python interpreter:

def skipped(f):
def g():

return f
return g

def composed(f, g):
def h(x):

return f(g(x))
return h

def added(f, g):
def h(x):

return f(x) + g(x)
return h

def square(x):
return x*x

def two(x):
return 2

What will Python output when the following lines are evaluated?

>>> composed(square, two)(7)

>>> skipped(added(square, two))()(3)

>>> composed(two, square)(2)

3. Draw the environment diagram for the following code:

from operator import add
def curry2(h):

def f(x):
def g(y):

return h(x, y)
return g

return f

make_adder = curry2(add)
add_three = make_adder(3)
five = add_three(2)
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3 Addendum: Environment Diagrams

An environment diagram helps visualize the Python environment when a program is
executed. The environment consists of a stack of frames, which contain variables and the
values bound to them.

x = 2

def square(x):
return x ** 2

square(2)

3.1 Questions

1. Draw the environment diagram that results from running the following code.

a = 1
def b(b):

return a + b
a = b(a)
a = b(a)
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2. Draw the environment diagram that results from executing the code below.

def this(x):
return 2*that(x)

def that(x):
x = y + 1
this = that
return x

x, y = 1, 2
this(that(y))

3.2 Extra Questions

1. Draw the environment diagram that results from executing the code below.

from operator import add, mul

six = 2

def ty(one, a):
spring = one(a, six)
return spring

def fif(teen):
return teen ** 2

six = ty(add, mul(six, six))
spring = fif(six)
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