
CONTROL AND HIGHER ORDER FUNCTIONS 1
COMPUTER SCIENCE 61A

January 29, 2015

1 Control

Control structures direct the flow of logic in a program. For example, conditionals allow
a program to skip sections of code, while iteration allows a program to repeat a section.

1.1 Conditional Statements

Conditional statements let programs execute different lines of code depending on certain
conditions. In Python, we can use the if- elif-else block:

if <conditional expression>:
<suite of statements>

elif <conditional expression>:
<suite of statements>

else:
<suite of statements>

Some notes:

• The else and elif statements are optional.

• You can have any number of elif statements.

• A conditional expression is a Python expression. All that matters for control is
whether its value is a true value or a false value.

• The code that is executed is the suite that is indented under the first if/elif that
has a true conditional expression. If none are true, then the else suite is executed.

• Once one suite is executed, the rest are skipped.

1

DISCUSSION 1: CONTROL AND HIGHER ORDER FUNCTIONS Page 2
Note: in Python, there are a few things that are treated as false values:

• The boolean False

• The integer 0

• The value None

• And more. . .
Python also includes boolean operators and, or, and not. These operators are used to
combine and manipulate boolean values.

• not True evaluates to False, and not False evaluates to True.

• True and True evaluates to True, but a false value on either side makes it False.

• False or False evaluates to False, but a true value on either side makes it True.

1.2 Iteration

Iteration lets a program repeat statements multiple times. A common iterative block of
code is the while loop:

while <conditional clause>:
<body of statements>

This block of code states: “while the conditional clause is still True, continue executing
the indented body of statements.” Here is an example:

>>> def countdown(x):
... while x > 0:
... print(x)
... x = x - 1
... print("Blastoff!")
...
>>> countdown(3)
3
2
1
Blastoff!

1.3 Questions

1. Fill in the is prime function, which returns True if n is a prime number and False
otherwise.

Hint: use the % operator: x % y returns the remainder of x when divided by y.

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 1: CONTROL AND HIGHER ORDER FUNCTIONS Page 3
def is_prime(n):

1.4 Extra Questions

1. Fill in the choose function, which returns the number of ways to choose k items from
n items. Mathematically, choose(n, k) is defined as:

n× (n− 1)× (n− 2)× · · · × (n− k + 1)

k × (k − 1)× (k − 2)× · · · × 2× 1

def choose(n, k):
"""Returns the number of ways to choose K items from

N items.

>>> choose(5, 2)
10
>>> choose(20, 6)
38760
"""

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 1: CONTROL AND HIGHER ORDER FUNCTIONS Page 4

2 Higher Order Functions

A function that manipulates other functions is called a higher order function (HOF),
which is a function that takes functions as arguments, returns a function, or both.

2.1 Functions as Argument Values

Suppose we want to square or double every integer from 1 to n and print the result as
we go. Fill in the functions square ints and double ints by using the square and
double functions we have defined.

def square(x):
return x * x

def square_ints(n):
"""Print out the square of every integer from 1 to n.
>>> square_ints(3)
1
4
9
"""

def double(x):
return 2 * x

def double_ints(n):
"""Print out the double of every integer from 1 to n.
>>> double_ints(3)
2
4
6
"""

The only difference between square ints and double ints is the function called be-
fore printing (either square or double).

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 1: CONTROL AND HIGHER ORDER FUNCTIONS Page 5
It would be nice to have a generalized function, transform ints, that took care of
the while loop and the incrementing for us. That way, we could triple ints or
cube ints without repeating so much code:

def square_ints(n):
transform_ints(square, n)

def double_ints(n):
transform_ints(double, n)

def cube(x):
return x * x * x

def cube_ints(n):
transform_ints(cube, n)

2.2 Questions

1. Implement the function transform ints that takes in a function func and a num-
ber n and prints the result of applying that function to each of the first n natural
numbers.

def transform_ints(func, n):
"""Print out all integers from 1 to n with func applied
on them.

>>> def square(x):
... return x * x
>>> transform_ints(square, 3)
1
4
9
"""

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 1: CONTROL AND HIGHER ORDER FUNCTIONS Page 6
2.3 Functions as Return Values

Often, we will need to write a function that returns another function. One way to do this
is to define a function inside of a function:

def outer(x):
def inner(y):

...
return inner

Note two things:

1. The return value of the outer function is inner. This is where a function returns a
function.

2. In this case, the inner function is defined inside of the outer function. This is a
common pattern, but it is not necessary; we could have defined inner outside of
the outer and still use the same return statement.

2.4 Questions

1. Write a function and add that takes a function f (such that f is a function of one
argument) and a number n as arguments. It should return a function that takes one
argument, and does the same thing as the function f, except also adds n to the result.

def and_add(f, n):
"""Return a new function. This new function takes an
argument x and returns f(x) + n.

>>> def square(x):
... return x * x
>>> new_square = and_add(square, 3)
>>> new_square(4) # 4 * 4 + 3
19
"""

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 1: CONTROL AND HIGHER ORDER FUNCTIONS Page 7
2. Draw the environment diagram that results from running the following code:

n = 7

def f(x):
n = 8
return x + 1

def g(x):
n = 9
def h():

return x + 1
return h

def f(f, x):
return f(x + n)()

m = f(g, n)

2.5 Extra Questions

1. Implement a function keep ints, which takes in a function cond and a number n,
and only prints a number from 1 to n if calling cond on that number returns True:

def keep_ints(cond, n):
"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):
... # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> keep_ints(is_even, 5)
2
4
"""

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 1: CONTROL AND HIGHER ORDER FUNCTIONS Page 8
2. The following code has been loaded into the Python interpreter:

def skipped(f):
def g():

return f
return g

def composed(f, g):
def h(x):

return f(g(x))
return h

def added(f, g):
def h(x):

return f(x) + g(x)
return h

def square(x):
return x*x

def two(x):
return 2

What will Python output when the following lines are evaluated?

>>> composed(square, two)(7)

>>> skipped(added(square, two))()(3)

>>> composed(two, square)(2)

3. Draw the environment diagram for the following code:

from operator import add
def curry2(h):

def f(x):
def g(y):

return h(x, y)
return g

return f

make_adder = curry2(add)
add_three = make_adder(3)
five = add_three(2)

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 1: CONTROL AND HIGHER ORDER FUNCTIONS Page 9

3 Addendum: Environment Diagrams

An environment diagram helps visualize the Python environment when a program is
executed. The environment consists of a stack of frames, which contain variables and the
values bound to them.

x = 2

def square(x):
return x ** 2

square(2)

3.1 Questions

1. Draw the environment diagram that results from running the following code.

a = 1
def b(b):

return a + b
a = b(a)
a = b(a)

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 1: CONTROL AND HIGHER ORDER FUNCTIONS Page 10
2. Draw the environment diagram that results from executing the code below.

def this(x):
return 2*that(x)

def that(x):
x = y + 1
this = that
return x

x, y = 1, 2
this(that(y))

3.2 Extra Questions

1. Draw the environment diagram that results from executing the code below.

from operator import add, mul

six = 2

def ty(one, a):
spring = one(a, six)
return spring

def fif(teen):
return teen ** 2

six = ty(add, mul(six, six))
spring = fif(six)

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

