ITERATORS, GENERATORS, AND STREAMS

COMPUTER SCIENCE 61A

April 16, 2015

Iterators

An iterator is an object that represents a sequence of values. Here is an example of a
class that implements Python’s iterator interface. This iterator calculates all of the natural
numbers one-by-one, starting from zero:

class Naturals () :
def init_ (self):

self.current = 0
def next (self):
result = self.current

self.current += 1
return result

def iter (self):
return self

There are two components of Python’s iterator interface: the __next__ method, and the
__iter__ method.

1.1 _next__

The __next__ method usually does two things:
1. calculates the next value
2. checks if it has any values left to compute

To return the next value in the sequence, the iterator does some computation defined in
the _ next__ method.

DISCUSSION 10: ITERATORS, GENERATORS, AND STREAMS Page 2
When there are no more values left to compute, the __next_ method must raise a type
of exception called StopIteration. This signals the end of the sequence.

Note: the __next__ method defined above does NOT raise any StopIteration excep-
tions. Why? Because there are always more values left to compute! Remember, there is no
“last natural number”, so there is technically no “end of the sequence.” However, if you
wanted to define a finite iterator, then you would raise a StopIteration after returning
the final value.

1.2 _iter__

The purpose of the __iter_ method is to return an iterator object. By definition, an it-
erator object is an object that has implemented both the __next__and __iter_ meth-
ods.

This has an interesting consequence. If a class implements botha __next__ method and
a__iter_ method, its __iter_ method can just return self (like in the example).
Since the class implements both __next__and __iter_ , it is technically an iterator
object, soits __iter__ method can just return itself.

1.3 Implementation

When defining an iterator object, you should always keep track of how much of the se-
quence has already been computed. In the above example, we use an instance variable
self.current to keep track.

Iterator objects maintain state. Successive calls to __next__ will most likely output dif-
ferent values each time, so __next___is considered non-pure.

How do we call __next___and __iter_ ? Python has built-in functions called next
and iter for this. Calling next (some_iterator) will then cause Python to implicitly
call some_iterator’s _ next__ method. Calling iter (some_iterator) will make
a similar implicit call to some_iterator’s___iter__ method.

For example, this is how we would use the Naturals iterator:

>>> nats = Naturals/()

>>> nats_iter = iter (nats)
>>> next (nats_iter)

0

>>> next (nats_iter)

1

>>> next (nats_iter)

2

CS 61A Spring 2015: John DeNero, with

Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 10: ITERATORS, GENERATORS, AND STREAMS Page 3
However, we don’t really need to call iter on nats. Why not?

Because you can use iterator objects in for loops. In other words, any object that satisfies
the iterator interface can be iterated over:

>>> nats = Naturals/()
>>> for n in nats:
print (n)

Forever!

This works because the Python for loop implicitly calls the __iter_ method of the
object being iterated over, and repeatedly calls next on it. In other words, the above
interaction is (basically) equivalent to:

nats_iter = iter (nats)
is_done = False
while not is_done:
try:
val = next (nats_iter)
print (val)
except Stoplteration:
is_done = True

1.4 Questions

1. Define an iterator whose i-th element is the result of combining the i-th elements of
two input iterables using some binary operator, also given as input. The resulting
iterator should have a size equal to the size of the shorter of its two input iterators.

>>> from operator import add

>>> evens = IterCombiner (Naturals (), Naturals (), add)
>>> next (evens)

0

>>> next (evens)

2

>>> next (evens)

4

CS 61A Spring 2015: John DeNero, with

Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

Di1sCUSSION 10: ITERATORS, GENERATORS, AND STREAMS Page 4
class IterCombiner (object) :

def @ init_ (self, iterl, iter2, combiner):

def next (self):

def iter (self):

2. What is the result of executing this sequence of commands?

>>> naturals = Naturals /()

>>> doubled_naturals = IterCombiner (naturals, naturals, add)
>>> next (doubled_naturals)

>>> next (doubled_naturals)

1.5 Extra Practice

1. Create an iterator that generates the sequence of Fibonacci numbers.

class Fibonacci (object) :
def init_ (self):

def @ next_ (self):

def iter (self):

CS 61A Spring 2015: John DeNero, with
Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,

Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

Di1SCUSSION 10: ITERATORS, GENERATORS, AND STREAMS Page 5

Generators

A generator function is a special kind of Python function that uses a yield statement
instead of a return statement to report values. When a generator function is called, it
returns an iterable object.

Here is an iterator for the natural numbers written using the generator construct:

def generate_naturals () :
current = 0
while True:
yield current
current += 1

Calling generate_naturals () will return a generator object:

>>> gen = generate_naturals/()
>>> gen
<generator object gen at ...>

To use the generator object, you then call next on it:

>>> next (gen)
0
>>> next (gen)
1
>>> next (gen)
2

Think of a generator object as containing an implicit __next__ method. This means, by
definition, a generator object is an iterator.

2.1 yield

The yield statement is similar to a return statement. However, while a return state-
ment closes the current frame after the function exits, a yield statement causes the frame
to be saved until the next time __next__ is called, which allows the generator to auto-
matically keep track of the iteration state.

Once __next__ is called again, execution picks up from where the previously executed
yield statement left off, and continues until the next yield statement (or the end of the
function) is encountered.

Including a yield statement in a function automatically signals to Python that this func-
tion will create a generator. When we call the function, it will return a generator object,

CS 61A Spring 2015: John DeNero, with

Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 10: ITERATORS, GENERATORS, AND STREAMS Page 6
instead of executing the code inside the body. When the returned generator’s ___next___
method is called, the code in the body is executed for the first time, and stops executing
upon reaching the first yield statement.

2.2 Implementation

Because generators are technically iterators, you can implement __iter__ methods us-
ing only generators. For example,

class Naturals () :
def _ init_ (self):
self.current = 0
def iter (self):
while True:
yield self.current
self.current += 1

Naturals __iter_ method now returns a generator object. The usage of a Naturals
object is exactly the same as before:

>>> nats = Naturals()

>>> nats_iter = iter (nats)
>>> next (nats_iter)

0

>>> next (nats_iter)

>>> next (nats_iter)
2

There are a couple of things to note:

e No __next__ method in Naturals. Remember, __iter__ only needs to return an
object that has implemented a __next__ method. Since generators have their own
__next__ method, the new Naturals implementation is perfectly valid.

e natsisa Naturals object and nats_iter isa generator

Since generators are iterators, you can also use generators in for loops.

CS 61A Spring 2015: John DeNero, with

Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

Di1SCUSSION 10: ITERATORS, GENERATORS, AND STREAMS

Page 7
2.3 Questions

1. Define a generator that yields the sequence of perfect squares.

def perfect_squares() :

2.4 Extra Practice

1. Write a generator function that returns lists of all subsets of the positive integers from
1 to n. Each call to this generator’s __next__ method will return a list of subsets of

theset [1, 2, ..., n],wherenisthenumber of times__next__ was previously
called.

def generate_subsets() :

mmnn

>>> subsets = generate_subsets()
>>> next (subsets)

[[]]
>>> next (subsets)
[rl1, [1]]

>>> next (subsets)

cer, 11, 2y, [1, 27]

mmnn

CS 61A Spring 2015: John DeNero, with

Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,

Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

Di1SCUSSION 10: ITERATORS, GENERATORS, AND STREAMS Page 8

Streams

A stream is a lazily-evaluated linked list. A stream’s elements (except for the first element)
are only computed when those values are needed.

class Stream:
class empty:
mn "An empty Stream" mn
empty = empty ()

def _ init_ (self, first, compute_rest=lambda: Stream.empty):
assert callable (compute_rest), ’'must be a function’
self.first = first
self._compute_rest = compute_rest

@property
def rest (self):
""'"Return the rest, computing it if necessary."""
if self._compute_rest is not None:
self._rest = self._compute_rest /()
self._compute_rest = None
return self._rest

A Stream instance is similar to a Link instance. Both have first and rest attributes.
The rest of a Link is either a Link or Link.empty. Likewise, the rest of a Stream is
either a Streamor Stream.empty.

However, instead of specifying all of the elements in __init__, we provide a function,
compute_rest, that will be called to compute the remaining elements of the stream.
Remember that the code in the function body is not evaluated until it is called, which lets
us implement the desired evaluation behavior.

This implementation of streams also uses memoization. The first time a program asks a
Streamforits rest field, the St ream code computes the required value using compute_rest,
saves the resulting value, and then returns it. After that, every time the rest field is ref-
erenced, the stored value is simply returned.

Here is an example:

def make_integer_stream(first=1) :
def compute_rest () :
return make_integer_stream(first+1)
return Stream(first, compute_rest)

CS 61A Spring 2015: John DeNero, with

Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DISCUSSION 10: ITERATORS, GENERATORS, AND STREAMS Page 9
Here, we start out with a stream whose first element is 1, and whose compute_rest func-
tion creates another stream. So when we do compute the rest, we get another stream
whose first element is one greater than the previous element, and whose compute_rest
creates another stream. Hence, we effectively get an infinite stream of integers, computed
one at a time. This is almost like an infinite recursion, but one which can be viewed one
step at a time, and so does not crash.

3.1 Questions

1. Suppose one wants to define a random infinite stream of numbers via the recursive
definition: “a random infinite stream consists of a first random number, followed by
a remaining random infinite stream.” Consider an attempt to implement this via the
code. Are there any problems with this? How can we fix this?

from random import random
random_stream = Stream(random (), lambda: random_stream)

2. Write a function every_other, which takes in an infinite stream and returns a stream
containing its even indexed elements.

def every_other (s):

CS 61A Spring 2015: John DeNero, with

Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DiIscussIiON 10: ITERATORS, GENERATORS, AND STREAMS Page 10
3.2 Extra Questions

1. Write a function fib_stream that creates an infinite stream of Fibonacci Numbers,
using the add_st reams function that was introduced in lab.

def fib_stream() :

2. Write a function seventh that creates an infinite stream of the decimal expansion of
dividing n by 7.

def seventh (n):
"""The decimal expansion of n divided by 7.

>>> first_k(seventh (1), 10)
[1/ 4/ 2/ 8/ 5/ 7/ l/ 4/ 2/ 8]

mmn

CS 61A Spring 2015: John DeNero, with

Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

DIsCUSSION 10: ITERATORS, GENERATORS, AND STREAMS Page 11
3.3 Higher-Order Functions on Streams

Stream processing functions can be higher-order, abstracting a general computational
process over streams. Take a look at filter_stream:

def filter_stream(filter_func, s):
def compute_rest () :
return filter stream(filter_func, s.rest)

if s is Stream.empty:

return s
elif filter func(s.first):

return Stream(s.first, compute_rest)
else:

return compute_rest ()

The Stream we create has as its compute_rest a function that “promises” to filter the rest
of the Stream when called. So at any one point, the entire stream has not been filtered.
Instead, only the part that has been referenced has been filtered.

3.4 Questions

1. What does the following Stream output? Try writing out the first few values of the
stream to see the pattern.

def my_stream() :
def compute_rest () :
return add_streams (map_stream(double, my_stream()),
my_stream())
return Stream(l, compute_rest)

2. (Summer 2012 Final) What are the first five values in the following stream?

def my_stream() :
def compute_rest () :

return add_streams (filter_ stream(lambda x: x % 2 == 0,
my_stream()), map_stream(lambda x: x + 2,
my_stream()))

return Stream (2, compute_rest)

CS 61A Spring 2015: John DeNero, with

Soumya Basu, Kevin Chen, Rohan Chitnis, Timothy Greeno, Jessica Gu, Brian Hou, Robert Huang, Andrew Huang,
Joy Jeng, Austin Le, Youri Park, Harold Pimentel, Sumukh Sridhara, Steven Tang, Michelle Tian, Alana Tran, Dickson
Tsai, Max Wolffe, Albert Wu, Marvin Zhang

