
CS 61A Structure and Interpretation of Computer Programs

Spring 2016 Test 1 Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is open book, open notes, closed computer, closed calculator. The official CS 61A midterm 1 study
guide will be provided.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

BearFacts email (@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

I pledge my honor that during this

examination I have neither given

nor received assistance. (please
sign)



2

1. (12 points) Evaluate This!

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”. If
an expression yields (or prints) a function, write “<Function>”. No answer requires more than 3 lines. (It’s
possible that all of them require even fewer.) The first two rows have been provided as examples.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None, plus all
values passed to print.

(a) (10 pt) Assume that python3 has executed the statements on the left:

y = 7

def b(x):

return lambda y: x(y)

def c(x):

return 3

w = b(c)

def c(x):

return x

Expression Interactive Output

pow(2, 3) 8

print(4, 5) + 1
4 5
Error

(3 and abs)(-1) 1

print(3) or 1/0
3
Error

print Function

([1, 2, 3] if y // (y+1) else [4, 5])[1] 5

w(5) 3

(b) (2 pt) Assume that python3 has executed the following statements:

def d(S):

def f(k):

return k < len(S) and (S[k] == S[0] or f(k+1))

if len(S) == 0:

return False

else:

return f(1) or d(S[1:])

Expression Interactive Output

print(d([1, 2, 3]), d([0, 1, 2, 1, 0])) False True



Name: 3

2. (12 points) Environmental Policy

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

1

2

3

4

5

6

7

8

9

10

y = 3

def out(h, m):

y = 5 * m

def inner ():

return y

if m == 0:

return h

else :

return out(inner , m-1)

v = out(None , 1)()

Global frame

y 3

out

v 5

func out(h, m) [parent= Global]

func inner() [parent= f1]

func inner() [parent= f2]

f1: out [parent= Global ]

h None

m 1

inner

y 5

Return value

f2: out [parent= Global ]

h

m 0

inner

y 0

Return value

f3: inner [parent= f1 ]

Return value 5

f4: [parent= ]

Return value



4

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames. The
<line ...> annotation in a lambda value gives the line in the Python source of a lambda expression.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Add all missing parents of function values.

• Show the return value for each local frame.

1

2

3

def lazy (n):

return lambda k: n if k==0 else lazy (n+1)

v = lazy (4)(1)(0)

Global frame

lazy

v 5

func lazy(n) [parent= Global]

f1: lazy [parent= Global ]

n 4

Return value λ <line 2> [parent= f1]

f2: λ<line 2> [parent= f1 ]

k 1

Return value

f3: lazy [parent= Global ]

n 5

Return value λ <line 2> [parent= f3]

f4: λ<line 2> [parent= f3 ]

k 0

Return value 5



Name: 5

3. (1 points) Extra Who described Italy (in translation) as “the land where lemon blossoms blow, / And
through dark leaves the golden oranges glow.”?

4. (4 points) Going Around in Cycles

Consider a list of integers, L, in which each integer is a value in 0 to len(L)-1 (inclusive). That is, each item
in the list could also be used as a valid index into the list. We’ll say that L has a cycle of length k iff for some
sequence of index values i1, i2, . . . , ik, we have L[i1] = i2, L[i2] = i3, ..., L[ik] = i1. For example, the
list L = [3, 1, 4, 5, 0, 2] has a cycle of length 1: 1 → 1, and a cycle of length 5: 0 → 3 → 5 → 2 → 4 → 0.
For the purposes of this problem, we’ll count something as a cycle of length k only if the first k indices in it
contain no repetitions (so L in the example does not contain a cycle of length 2 even though 1 → 1 → 1.

Write a function has_cycle(L, k) that returns a true value iff L has a cycle of length k by filling in the
template below.

def has_cycle(L, k):

"""True iff L has a cycle of length K>=1. Assumes 0 <= L[i] < len(L)

for 0 <= i < len(L).

"""

def cycle_at(s):

"""L has a cycle of length K starting at S."""

p = L[s]

n = 1

while n < k:

if p == s:

return False

p = L[p]

n += 1

return p == s

for j in range(len(L)):

if cycle_at(j):

return True

return False



6

5. (4 points) Your Father’s Parentheses

Suppose we have a sequence of quantities that we want to multiply together, but can only multiply two at a
time. We can express the various ways of doing so by counting the number of different ways to parenthesize
the sequence. For example, here are the possibilities for products of 1, 2, 3, 4 and 5 elements:

Product a ab abc abcd abcde

Count 1 1 2 5 14

a ab a(bc) a(b(cd)) a(b(c(de))) (ab)(c(de)) (a((bc)d))e
(ab)c a((bc)d) a(b((cd)e)) (ab)((cd)e) ((ab)(cd))e

Parenthesizations (ab)(cd) a((bc)(de)) (a(bc))(de) ((a(bc))d)e
(a(bc))d a((b(cd))e) ((ab)c)(de) (((ab)c)d)e
((ab)c)d a(((bc)d)e) (a(b(cd)))e

Assume, as in the table above, that we don’t want to reorder elements.

Define a function count_groupings that takes a positive integer n and returns the number of ways of paren-
thesizing the product of n numbers. (You might not need to use all lines.)

def count_groupings(n):

"""For N >= 1, the number of distinct parenthesizations

of a product of N items.

>>> count_groupings(1)

1

>>> count_groupings(2)

1

>>> count_groupings(3)

2

>>> count_groupings(4)

5

>>> count_groupings(5)

14

"""

if n == 1:

return 1

total = 0

i = 1

while i < n:

total += count_groupings(i) * count_groupings(n - i)

i += 1

return total



Name: 7

6. (8 points) Amazing

In lecture, we did some problems involving finding one’s way through a maze, representing the maze as a
predicate (boolean function)—the parameter blocked. The idea was that blocked(x, y) iff the grid square
at row y and column x was blocked. Let’s consider a different representation.

Again, mazes will be represented by functions, but with a different specification. A maze function, say M, in
this formulation describes the state of the maze from the point of view of a maze runner. M accepts a single
argument, direction, which describes the action the runner tries to take: either the string “south” or “west”,
indicating that the runner tries to take one step south or one step west, respectively. M then returns either:

• Another maze function that represents the state of the runner after taking the indicated step. It again
accepts a direction and returns one of these three things;

• The string “exit”, signifying that the move causes the runner to successfully reach the exit; or

• The string “dead end”, which indicates that the runner was unable to take the requested action because
of being blocked by a wall.

(a) (4 pt) Define a function pred_maze that returns a maze function (as described above).

If M = pred_maze(x, y, P, e), then M represents a runner in a maze in which

• The runner is at coordinates (x, y).

• Squares (a, b) for which a ≤ e are unblocked and are exit squares.

• A square at (a, b) is otherwise open iff P (a, b).

For example, suppose that Q is a function such that Q(a,b) is true on all the white squares in the following
grid (where, just to be different, the lower-left corner represents position (-5, -5)):

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

Then we’d have

>>> M0 = pred_maze(0, 1, Q, -4)

>>> M1 = M0(’west’)

>>> M1

<function ...>

>>> M1(’west’)

’dead end’

>>> M1(’south’)

<function ...>

>>> M2 = pred_maze(-3, -1, Q, -4)

>>> M2(’west’)

’exit’

Fill in your solution on next page.



8

def pred_maze(x0 , y0 , open , exit):

"""Return a maze in which the runner is at (X0 , Y0), every square

(a, b) where a <= EXIT is an exit , and otherwise a square (a, b)

is open iff OPEN(a, b). It is assumed that (X0 , Y0) is open."""

def maze(dir):

x, y = (x0, y0 - 1) if dir == "south" else (x0 - 1, y0)

if x <= exit:

return "exit"

elif open(x, y):

return pred_maze(x, y, open , exit)

else:

return "dead end"

return maze



Name: 9

(b) (4 pt) Define a function path_out that takes a maze and returns a string describing a path to an exit, or
returns None iff there is no such path. A call path_out(M) will return a string such as

’south west south west west’

(as in the doctest below) to indicate that the necessary path takes one step south, then a step west, then
south, and then two steps west. (Don’t worry about extra spaces in the returned string.) When multiple
paths exist, return any one. Using the previous value of function Q, for example, we’d see:

>>> M = pred_maze(-1, 1, Q, -4)

>>> path_out(M)

’south west south west west’

>>> M = pred_maze(2, -1, Q, -4)

>>> path_out(M) # Returns None

FYI: The ‘+’ operator on strings is string concatenation (‘+=’) also works.)

def path_out(M):

"""Given a maze function M in which the runner is not yet out

of the maze , returns a string of the form "D1 D2 ...", where each

Di is either south or west , indicating a path from M to an exit ,

or None iff there is no such path."""

for dir in ["south", "west"]:

next = M(dir)

if next == "exit":

return dir + " "

elif next != "dead end":

rest_of_path = path_out(next)

if rest_of_path:

return dir + " " + rest_of_path

return None


