Lecture #6: Recursion
Philosophy of Functions (I)

```python
def sqrt(x):
    
    """Assuming X >= 0, returns approximation to square root of X.""
```

Syntactic specification (signature)

- **Precondition**
- **Postcondition**

Semantic specification

- Specifies a **contract** between caller and function implementor.
- **Syntactic specification** gives syntax for calling (number of arguments).
- **Semantic specification** tells what it does:
 - **Preconditions** are requirements on the caller.
 - **Postconditions** are promises from the function's implementor.
Philosophy of Functions (II)

• Ideally, the specification (syntactic and semantic) should suffice to use the function (i.e., without seeing the body).

• There is a *separation of concerns* here:
 - The caller (client) is concerned with providing values of x, a, b, and c and using the result, but not how the result is computed.
 - The implementor is concerned with how the result is computed, but not where x, a, b, and c come from or how the value is used.
 - From the client’s point of view, sqrt is an *abstraction* from the set of possible ways to compute this result.
 - We call this particular kind *functional abstraction*.

• Programming is largely about choosing abstractions that lead to clear, fast, and maintainable programs.
Philosophy of Functions (III)

• Each function should have exactly one, logically coherent and well defined job.
 - Intellectual manageability.
 - Ease of testing.

• Functions should be properly documented, either by having names (and parameter names) that are unambiguously understandable, or by having comments (docstrings in Python) that accurately describe them.
 - Should be able to understand code that calls a function without reading the body of the function.

• Don’t Repeat Yourself (DRY).
 - Simplifies revisions.
 - Isolates problems.
Philosophy of Functions (IV)

- Corollary of DRY: Make functions general
 - copy-paste leads to maintenance headaches

- Taking two (nearly) repeated sections of program code and turning them into calls to a common function is an example of **refactoring**.

- Keep names of functions and parameters meaningful:

<table>
<thead>
<tr>
<th>Instead of</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>turn_is_over</td>
</tr>
<tr>
<td>d</td>
<td>dice</td>
</tr>
<tr>
<td>helper</td>
<td>take_turn</td>
</tr>
</tbody>
</table>

(Bowling example From Kernighan&Plauger):

<table>
<thead>
<tr>
<th>y</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>ball</td>
</tr>
<tr>
<td>f</td>
<td>frame</td>
</tr>
</tbody>
</table>
Simple Linear Recursions (Review)

• We’ve been dealing with recursive function (those that call themselves, directly or indirectly) for a while now.

• From Lecture #3:

```python
def sum_squares(N):
    """The sum of K**2 for K from 1 to N (inclusive).""
    if N < 1:
        return 0
    else:
        return N**2 + sum_squares(N - 1)
```

• This is a simple *linear recursion*, with one recursive call per function instantiation.

• Can imagine a call as an expansion:

```
sum_squares(3) => 3**2 + sum_squares(2)
   => 3**2 + 2**2 + sum_squares(1)
   => 3**2 + 2**2 + 1**2 + sum_squares(0)
   => 3**2 + 2**2 + 1**2 + 0 => 14
```

• Each call in this expansion corresponds to an environment frame, linked to the global frame, as shown here.
Tail Recursion

- We've also seen a special kind of linear recursion that is strongly linked to iteration:

  ```python
def sum_squares(N):
    """The sum of K**2 for 1 <= K <= N.""
    accum = 0
    k = 1
    while k <= N:
      accum += k**2
      k += 1
    return accum
  ```

  ```python
def sum_squares(N):
    """The sum of K**2 for 1 <= K <= N.""
    def part_sum(k, accum):
      if k <= N:
        return part_sum(k+1, accum + k**2)
      else:
        return accum
    part_sum(1, 0)
  ```

- The right version is a tail-recursive function: the recursive call is either the returned value or very last action performed.

- The environment frames correspond to the iterations of the loop on the left, as shown here.
Recursive Thinking

- So far in this lecture, I’ve shown recursive functions by tracing or repeated expansion of their bodies.
- But when you call a function from the Python library, you don’t look at its implementation, just its documentation (“the contract”).
- **Recursive thinking** is the extension of this same discipline to functions as you are defining them.
- When implementing `sum_squares`, we reason as follows:
 - **Base case**: We know the answer is 0 if there is nothing to sum ($N < 1$).
 - Otherwise, we observe that the answer is N^2 plus the sum of the positive integers from 1 to $N - 1$.
 - But there is a function (`sum_squares`) that can compute $1 + \ldots + N - 1$ (its comment says so).
 - So when $N \geq 1$, we should return $N^2 + \text{sum}_\text{squares}(N - 1)$.
- This “recursive leap of faith” works as long as we can guarantee we’ll hit the base case.
Recursive Thinking in Mathematics

• To prevent an infinite recursion, must use this technique only when
 - The recursive cases are “smaller” than the input case, and
 - There is a minimum “size” to the data, and
 - All chains of progressively smaller cases reach a minimum in a
 finite number of steps.
• We say that such “smaller than” relations are well founded.
• We have

 Theorem (Noetherian Induction): Suppose \(\prec \) is a well-founded
 relation and \(P \) is some property (predicate) such that whenever
 \(P(y) \) is true for all \(y \prec x \), then \(P(x) \) is also true. Then
 \(P(x) \) is true for all \(x \).

• More general than the “line of dominos” induction you may have en-
 countered: If true for a base case \(b \), and if true for \(k \) when true for
 \(k - 1 \), then true for all \(k > b \).
A Problem

def find_first(start, pred):
 """Find the smallest k >= START such that PRED(START)."""
 ?