Lecture #7: Tree Recursion

Announcements:
- Hog contest to be released today (I think). It is optional.
- Also watch for HW #2.

Subproblems and Self-Similarity
- Recursive routines arise when solving a problem naturally involves solving smaller instances of the same problem.
- A classic example where the subproblems are visible is Sierpinski’s Triangle (aka bit Sierpinski’s Gasket).
- This triangle may be formed by repeatedly replacing a figure, initially a solid triangle, with three quarter-sized images of itself (1/2 size in each dimension), arranged in a triangle:

\[
\begin{array}{c}
\text{\hspace{1cm}}\\
\end{array}
\]

Or we can think creating a “triangle of order \(N\) and size \(S\)” by drawing either
- a solid triangle with side \(S\) if \(N = 0\), or
- three triangles of size \(S/2\) and order \(N - 1\) arranged in a triangle.

The Gasket in Python
- We can describe this as a recursive Python program that produces Postscript output.

```python
sin60 = sqrt(3) / 2

def make_gasket(x, y, s, n, output):
    """Write Postscript code for a Sierpinski's gasket of order N
    with lower-left corner at (X, Y) and side S on OUTPUT.""
    if n == 0:
        draw_solid_triangle(x, y, s, output)
    else:
        make_gasket(x, y, s/2, n - 1, output)
        make_gasket(x + s/2, y, s/2, n - 1, output)
        make_gasket(x + s/4, y + sin60*s/2, s/2, n - 1, output)

def draw_solid_triangle(x, y, s, output):
    """Draw a solid triangle lower-left corner at (X, Y) and side S.""
    print("{0} {1} moveto "
          "{2} 0 rlineto "
          "-{3} {4} rlineto "
          "closepath fill".format(x, y, s, s/2, s*sin60), file=output)
```

Aside: Using the Functions
- Just to complete the picture, we can use `make_gasket` to create a standalone Postscript file on a given file.

```python
def draw_gasket(n, output=sys.stdout):
    print("%!", file=output)
    make_gasket(100, 100, 400, 8, output)
    print("showpage", file=output)
```

Aside: The Gasket in Pure Postscript
- One can also perform the logic to generate figures in Postscript directly, which is itself a full-fledged programming language:

```
%! /sin60 3 sqrt 2 div def

/make_gasket {
    dup 0 eq {
        3 index 3 index moveto 1 index 0 rlineto 0 2 index rlineto
        1 index neg 0 rlineto closepath fill
    }
    { 3 index 3 index moveto 3 index 3 index 0.5 mul 3 index 1 sub make_gasket
        3 index 2 index 0.5 mul 3 index 3 index 0.5 mul
        3 index 1 sub make_gasket
        3 index 2 index 0.25 mul 3 index 3 index 0.5 mul add
        3 index 0.5 mul 3 index 1 sub make_gasket
    } ifelse
    pop pop pop pop
} def

100 100 400 8 make_gasket showpage
```

Tree Recursion
- The `make_gasket` function is an example of a tree recursion, where each call makes multiple recursive calls on itself.
- A linear recursion such as that on the left (for `sum_squares`) produces a pattern of calls such as that on the left, while `make_gasket` produces the pattern on the right—an instance of what we call a tree in computer science.
Finding a Path

Consider the problem of finding your way through a maze of blocks:

From a given starting square, one can move down one level and up to one column left or right on each step, as long as the square moved to is unoccupied.

Problem is to find a path to the bottom layer.

Diagram shows one path that runs into a dead end and one that escapes.

Path-Finding Program

Translating the problem into a function specification:

```python
def is_path(blocked, x0, y0):
    """True iff there is a path of squares from (X0, Y0) to some square (x1, 0) such that all squares on the path (including ends) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y) is true iff the grid square at (x, y) is occupied. Each step of a path goes down one row and 1 or 0 columns left or right."""
    if       :
        return 
    elif      :
        return 
    else:
        return 
```

This grid would be represented by a predicate M where, e.g., M(0,0), M(1,0), M(1,2), not M(1, 1), not M(2,2).

Here, is_path(M, 5, 6) is true: is_path(M, 1, 6) and is_path(M, 6, 6) are false.

is_path Solution

```python
def is_path(blocked, x0, y0):
    """True iff there is a path of squares from (X0, Y0) to some square (x1, 0) such that all squares on the path (including ends) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y) is true iff the grid square at (x, y) is occupied. Each step of a path goes down one row and 1 or 0 columns left or right."""
    if       :
        return 
    elif      :
        return 
    else:
        return 
```

Variation I

```python
def num_paths(blocked, x0, y0):
    """Return the number of paths that run from (X0, Y0) to some unoccupied square (x1, 0). BLOCKED is a predicate such that BLOCKED(x, y) is true iff the grid square at (x, y) is occupied. """
```

Result of num_paths(M, 5, 6) is 1 (original M). If M2 is the maze above (missing (7,1)), then result of num_paths(M2, 5, 6) is 5.

Variation II

```python
def find_path(blocked, x0, y0):
    """Return a string containing the steps in a path from (X0, Y0) to some unoccupied square (x1, 0), or None if not is_path(BLOCKED, X0, Y0). BLOCKED is a predicate such that BLOCKED(x, y) is true iff the grid square at (x, y) is occupied. """
```

Possible result of find_path(M, 5, 6):

""""(5, 6) (6, 5) (6, 4) (7, 3) (6, 2) (6, 1) (6, 0)"""
A Change in Problem

- Suppose we changed the definition of "path" for the maze problems to allow paths to go left or right without going down.
- And suppose we changed solutions in the obvious way, adding clauses for the \((x_0 - 1, y_0)\) and \((x_0 + 1, y_0)\) cases.
- Will this work? What would happen?

And a Little Analysis

- All our linear recursions took time proportional (in some sense) to the size of the problem.
- What about \texttt{is_path}?