Lecture #9: Abstractions and Objects

1. Functions are abstractions that represent computations and actions.
2. In the old days, one described programs as hierarchies of actions: procedural decomposition.
3. Starting in the 1970's, emphasis moved to the data that the functions operate on.
4. An abstract data type (ADT) represents some kind of thing and the operations upon it.
5. Instances of the type are often generically called objects.
6. We can usefully organize our programs around the abstract data types in them.
7. For each type, we define an interface that describes for users ("clients") of that type of data what operations are available.
8. Typically, the interface consists of functions.
9. The collection of specifications (syntactic and semantic—see lecture #6) constitute a specification of the type.
10. We call ADTs abstract because clients ideally need not know internals.

Functions as Data Abstractions (I)

- Functions can serve as objects.
- In the path-finding example, the blocked argument was a function.
- But it essentially represented data: the set of places that were blocked.

Rational Numbers

- The book uses "rational number" as an example of an ADT:
 - `def make_rat(n, d):
 """The rational number n/d, assuming n, d are integers, d!=0""
 ...`
 - `def add_rat(x, y):
 """The sum of rational numbers x and y."""
 ...`
 - `def mul_rat(x, y):
 """The product of rational numbers x and y."""
 ...`
 - `def numer(r):
 """The numerator of rational number r.""
 ...`
 - `def denom(r):
 """The denominator of rational number r.""
 ...`
- These definitions pretend that x, y, and r really are rational numbers.
- But from this point of view, numer and denom are problematic. Why?

A Better Specification

- Problem is that "the numerator (denominator) of r" is not well-defined for a rational number.
- If make_rat really produced rational numbers, then make_rat(2, 4) and make_rat(1, 2) ought to be identical. So should make_rat(1, -1) and make_rat(-1, 1).
- So a better specification would be
  ```python
  def numer(r):
      """The numerator of rational number r in lowest terms.""
      result = r(0)
      return result
  ```
  ```python
  def denom(r):
      """The denominator of rational number r in lowest terms. Always positive.""
      result = r(1)
      return result
  ```

Representation as Functions (I)

- We have a tool that can implement this specification now: functions.
  ```python
  from math import gcd  # Need Python3.5 actually.
  def make_rat(n, d):
      """The rational number n/d, assuming n, d are integers, d!=0""
      g = gcd(n, d) if d > 0 else -gcd(n, d)
      n //= g; d //= g
      return lambda which: n if which == 0 else d
  def numer(r):
      """The numerator of rational number r.""
      return r(0)
  def denom(r):
      """The denominator of rational number r.""
      return r(1)
  ```
Representation as Functions (II)

- Rational numbers represented as functions that take a single argument and reveal one of their local variables.

```python
from math import gcd

def make_rat(n, d):
    """The rational number n/d, assuming n, d are integers, d\neq 0"""
    g = gcd(n, d) if d > 0 else -gcd(n, d)
    n //= g; d //= g
    return lambda flag: n if flag == 0 else d

def numer(r):
    """The numerator of rational number r."""
    return r(0)

def denom(r):
    """The denominator of rational number r."""
    return r(1)

def add_rat(x, y):
    """The sum of rational numbers x and y."""
    n0, n1, d0, d1 = x(0), y(0), x(1), y(1)
    n, d = n0 * d1 + n1 * d0, d0 * d1
    g = gcd(n, d) if d > 0 else -gcd(n, d)
    n //= g; d //= g
    return lambda flag: n if flag == 0 else d

def mul_rat(x, y):
    """The product of rational numbers x and y."""
    return lambda flag: n * y(0) + n * denom(y) * denom(x)
```

Abstraction Violations and DRY

- Having created an abstraction (`make_rat`, `numer`, `denom`), use it:
 - Then, later changes of representation will affect less code.
 - Code will be clearer, since well-chosen names in the API make intent clear.

```python
...;

def add_rat(x, y):
    return make_rat(numer(x) + numer(y), denom(x) + denom(y))

def mul_rat(x, y):
    return make_rat(numer(x) * numer(y), denom(x) * denom(y))
```

Representation as Functions (III)

- One possibility:

```python
from math import gcd

def make_rat(n, d):
    """The rational number n/d, assuming n, d are integers, d\neq 0"""
    g = gcd(n, d) if d > 0 else -gcd(n, d)
    n //= g; d //= g
    return lambda flag: n if flag == 0 else d

def add_rat(x, y):
    n0, n1, d0, d1 = x(0), y(0), x(1), y(1)
    n, d = n0 * d1 + n1 * d0, d0 * d1
    g = gcd(n, d) if d > 0 else -gcd(n, d)
    n //= g; d //= g
    return lambda flag: n if flag == 0 else d

def mul_rat(x, y):
    """The product of rational numbers x and y."""
    return lambda flag: n * y(0) + n * denom(y) * denom(x)
```

Objects in Python

- In Python 3, every value is a reference to an object.
- Varieties of object correspond (roughly) to classes (types).
- Each object has some set of attributes, accessible using dot notation, which are values:
 - `E.Attr`, where `E` is a simple expression and `Attr` is a name, means "the current value of the `Attr` attribute of the object referred to by the value of `E`".
- Among these attributes are those whose values are a kind of function known as a method.
- For historical reasons or notational clarity, there are often alternative ways to access attributes than dot notation:

```python
x.__add__(y)   # add(x, y) or x+y
L.__getitem__(k)   # L[k]
x.__len__()  # len(x)
x.__eq__(y)   # x == y
```

Primitive Types: Numbers

- A primitive type is one that is built into a language, possibly with characteristics or syntax that cannot be written into user-defined types.
- In Python, numbers are such types: have their own literals and internal attributes that are not accessible to the programmer.
- Python distinguishes four types:
 - `int`: Integers.
 - `bool`: Limited integers restricted to two values equivalent to 0 and 1: False and True.
 - `float`: A subset of the rational numbers used to approximate real-valued quantities.
 - `complex`: A subset of the rational complex numbers used to approximate complex-valued quantities.

Primitive Types: Tuples

- `tuple` is another primitive type with special syntax.
- To create construct a tuple, use a sequence of expressions in parentheses:

```python
()           # The tuple with no values
(1, 2)       # A pair: tuple with two items
(1, )        # A singleton tuple: use comma to distinguish from (1).
(1, "Hello", (3, 4)) # Any mix of values possible.
```
- When unambiguous, the parentheses are unnecessary:

```python
x = 1, 2, 3  # Same as x = (1,2,3)
return True, 5  # Same as return (True, 5)
for i in 1, 2, 3:  # Same as for i in (1,2,3):
```

Tuples in Python (II)

• Basically, one can select values from a tuple and compare or print them, but little else.
• Select by item number:

```python
x = (1, 7, 5)
print(x[1], x[2])  # Prints 7 and 5
from operator import getitem
print(getitem(x, 1), getitem(x, 2))  # Prints 7 and 5
print(x.__getitem__(1), x.__getitem__(2))  # Prints 7 and 5
```

• Or select by “unpacking” (syntactic sugar):

```python
x = (1, (2, 3), 5)
a, b, c = x
print(b, c)  # Prints (2, 3) and 5
d, (e, f), g = x
print(e, g)  # Prints 2 and 5
```

• A useful way to return multiple things from a function.

A (More Conventional) Representation of Rational

• Yes, we can use functions to represent data, but it’s not common practice.
• Quite a bit of overhead, both in space and time.
• So, let’s use tuples instead:

```python
from math import gcd

def make_rat(n, d):
    """The rational number n/d, assuming n, d are integers, d!=0""
    g = gcd(n, d) if d > 0 else -gcd(n, d)
    return (n//g, d//g)

def numer(r):
    """The numerator of rational number r.""
    return r[0]

def denom(r):
    """The denominator of rational number r.""
    return r[1]
```

• What else changes (add_rat, mul_rat)?

Discussion

• But by using numer and denom in add_rat and mul_rat (slide 8), we have avoided having to touch them after this change in representation.
• The general lesson:

> Try to confine each design decision in your program to as few places as possible.

Endnote

math.gcd was introduced into Python in version 3.5. In its absence, you can implement it yourself:

```python
def gcd(a, b):
    if a == b == 0:
        return 1
    a, b = abs(a), abs(b)
    if a > b:
        a, b = b, a
    while a != 0 != b:
        a, b = b % a, a
    return b
```

```