Lecture #18: Recursive Processes, Memoization, Tree Structures
We can characterize (potentially) recursive functions according to the patterns in which data flows through them.

The simplest case is a non-recursive function call, which does something (call it h) to its input data and returns the result:

```python
def func0(x):
    return h(x)
```

“Operations” include any processing that does not cause further recursion.

This is a leaf call.
Iterative (Tail-Recursive) Processes

• Tail-recursive processes do no further processing after a recursive call

```python
def func1(x):
    if P(x):
        return h1(x)
    else:
        return func1(h2(x))
```

• Once we make a recursive call, can forget about the caller.

• Constant space needed for administrative overhead (in principle)

• Time required (number of operations) proportional to call depth.
Linear Recursions

• Linear recursions do one recursive call and then additional processing

```python
def func2(x):
    if P(x):
        return h1(x)
    else:
        return h3((func2(h2(x)))
```

• Must keep track of pending calls, because there is more to do for each.
• Space proportional to depth of calls needed for administrative overhead.
• Time required proportional to call depth.
Tree (General) Recursion

- Tree recursions do more than one recursive call in each function execution.

```python
def func3(x):
    if P1(x):
        return h1(x)
    else:
        y = func3(h2(x))
        if P2(x):
            return h3(x, y)
        z = func3(h4(x, y))
        return h5(x, y, z)
```

- Again, must keep track of pending calls (one per level).
- So, space proportional to depth of calls.
- But time required may be exponential in call depth.
Avoiding Redundant Computation

• Consider again the classic Fibonacci recursion:

```python
def fib(n):
    if n <= 1:
        return n
    else:
        return fib(n-1) + fib(n-2)
```

• This is tree recursion with a serious speed problem.

• Computation of, say \(\text{fib}(5) \) computes \(\text{fib}(2) \) several times, because both \(\text{fib}(4) \) and \(\text{fib}(2) \) compute it, and both \(\text{fib}(5) \) and \(\text{fib}(4) \) compute \(\text{fib}(3) \). Computing time grows exponentially.

• The iterative version does not have this problem because it saves the results of the recursive calls (in effect) and 'reuses them.'

```python
def fib(n):
    if n <= 1: return n
    a, b = 0, 1
    for k in range(2, n+1): a, b = b, a+b
    return b
```
Change Counting

Here's another version of change-counting, which you did in homework:

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    """Return the number of ways to make change for AMOUNT, where the coin denominations are given by COINS."
    """
    if amount == 0:
        return 1
    elif len(coins) == 0 or amount < 0:
        return 0
    else:
        return count_change(amount-coins[0], coins) + \
                count_change(amount, coins[1:]):
```

Here, we often revisit the same subproblem:

- E.g., Consider making change for 87 cents.
- When choose to use one half-dollar piece, we have the same subproblem as when we choose to use no half-dollars and two quarters.
Memoizing

- Extending the iterative Fibonacci idea, let’s keep around a table (“memo table”) of previously computed values.
- Consult the table before using the full computation.
- Example: count_change:

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = {}
    def count_change(amount, coins):
        if (amount, coins) not in memo_table:
            memo_table[amount,coins] = full_count_change(amount, coins)
        return memo_table[amount,coins]
def full_count_change(amount, coins):
    original recursive solution goes here verbatim
    when it calls count_change, calls memoized version.
    return count_change(amount,coins)
```

- Question: how could we test for infinite recursion?
Optimizing Memoization

- Used a dictionary to memoize `count_change`, which is highly general, but can be relatively slow.

- More often, we use arrays indexed by integers (lists in Python), but the idea is the same.

- For example, in the `count_change` program, we can index by `amount` and by the `starting index` of the original value of `coins` that we use.

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    # memo_table[amt][k] contains the value computed for
    # count_change(amt, coins[k:])
    memo_table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]
    def count_change(amount, coins):
        if amount < 0: return 0
        elif memo_table[amount][len(coins)] == -1:
            memo_table[amount][len(coins)]
            = full_count_change(amount, coins)
        return memo_table[amount][len(coins)]
    ...
Order of Calls

- Going one step further, we can analyze the order in which our program ends up filling in the table.

- So consider adding some tracing to our memoized `count_change` program:

```python
cancel_table = {}
count change(amount, coins):
 ... full_count_change(amount, coins) ...
return cancel_table[amount,coins]
@trace
def full_count_change(amount, coins):
 if amount == 0: return 1
elif len(coins) == 0 or amount < 0: return 0
else:
 return count_change(amount, coins[1:]) \
 + count_change(amount-coins[0], coins)
return count_change(amount,coins)
```
Result of Tracing

- Consider `count_change(57)` (returns only):

  ```python
count_change(57, ()) -> 0 Need shorter 'coins' arguments
full_count_change(56, ()) -> 0 first.
...
full_count_change(1, ()) -> 0 For same coins, need smaller
full_count_change(0, (1,)) -> 1 amounts first.
full_count_change(1, (1,)) -> 1
...
full_count_change(57, (1,)) -> 1
full_count_change(2, (5, 1)) -> 1
full_count_change(7, (5, 1)) -> 2
...
full_count_change(57, (5, 1)) -> 12
full_count_change(7, (10, 5, 1)) -> 2
full_count_change(17, (10, 5, 1)) -> 6
...
full_count_change(32, (10, 5, 1)) -> 16
full_count_change(7, (25, 10, 5, 1)) -> 2
full_count_change(32, (25, 10, 5, 1)) -> 18
full_count_change(57, (25, 10, 5, 1)) -> 60
full_count_change(7, (50, 25, 10, 5, 1)) -> 2
full_count_change(57, (50, 25, 10, 5, 1)) -> 62
```
Dynamic Programming

- Now rewrite `count_change` to make the order of calls explicit, so that we needn’t check to see if a value is memoized.
- Technique is called *dynamic programming* (for some reason).
- We start with the base cases (0 coins) and work backwards.

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
 memo_table = [[-1] * (len(coins)+1) for i in range(amount+1)]
 def count_change(amount, coins):
 if amount < 0: return 0
 else: return memo_table[amount][len(coins)]
 def full_count_change(amount, coins): # How often called?
 ... # (calls count_change for recursive results)
 for a in range(0, amount+1):
 memo_table[a][0] = full_count_change(a, ())
 for k in range(1, len(coins) + 1):
 for a in range(1, amount+1):
 memo_table[a][k] = full_count_change(a, coins[-k:])
 return count_change(amount, coins)
```

Last modified: Thu Mar 3 20:07:35 2016
Trees As a Class

• Just as linked lists can be repackaged as a class, so can trees.

class Tree:
    def __init__(self, label, children=()):
        self.label = label
        for branch in children:
            assert isinstance(branch, Tree)
        self.children = list(children)

def __repr__(self):
    if self.children:
        children_str = ', ' + repr(self.children)
    else:
        children_str = ''
    return 'Tree({0}{1})'.format(self.label, children_str)

def is_leaf(self):
    return not self.children

def __len__(self):
    """The number of vertices in me."""