Lecture #19: Complexity and Orders of Growth

Announcements

- Sign up for alternative test #2 times within next two weeks
 http://goo.gl/7Y3kRm
- Hog Contest Results Up!
 http://cs61a.org/proj/hog_contest/results/

Complexity

- Certain problems take longer than others to solve, or require more storage space to hold intermediate results.
- We refer to the time complexity or space complexity of a problem.
- But what does it mean to say that a certain program has a particular complexity?
- What does it mean for an algorithm?
- What does it mean for a problem?

A Direct Approach

- Well, if you want to know how fast something is, you can time it.
- Python happens to make this easy:
 >>> def fib(n):
 ... if n <= 1: return n
 ... else: return fib(n-2) + fib(n-1)
 ...
 >>> from timeit import repeat
 >>> repeat('fib(10)', 'from __main__ import fib', number=5)
 [0.000491..., 0.000486..., 0.000487...]
 >>> repeat('fib(20)', 'from __main__ import fib', number=5)
 [0.060..., 0.060..., 0.060...]
 >>> repeat('fib(30)', 'from __main__ import fib', number=5)
 [7.74..., 7.81..., 7.81...]

- repeat(Stmt, Setup, number=N) says Execute Setup (a string containing Python code), then execute Stmt (a string) N times. Repeat this process 3 times and report the time required for each repetition.

A Direct Approach, Continued

- You can also use this from the command line:
 ...# python3 -m timeit --setup='from fib import fib' 'fib(10)'
 10000 loops, best of 3: 97 usec per loop
- This command automatically chooses a number of executions of fib to give a total time that is large enough for an accurate average, repeats 3 times, and reports the best time.

Strengths and Problems with Direct Approach

- Good: Gives actual times; answers question completely for given input and machine.
- Bad: Results apply only to tested inputs.
- Bad: Results apply only to particular programs and platforms.
- Bad: Cannot tell us anything about complexity of algorithm or of problem.
But Can't We Extrapolate?

- Why not try a succession of times, and use that to figure out timing in general?

... for t in 5 10 15 20 25 30; do
 > echo n "$t": "
 > python3 -m timeit --setup='from fib import fib' "fib($t)"
 > done
5: 100000 loops, best of 3: 8.16 usec per loop
10: 10000 loops, best of 3: 96.8 usec per loop
15: 1000 loops, best of 3: 1.08 msec per loop
20: 100 loops, best of 3: 12 usec per loop
25: 10 loops, best of 3: 133 msec per loop
30: 10 loops, best of 3: 1.47 sec per loop

- This looks to be exponential in t with exponent of \(\approx 1.6 \).
- But... what if the program special-cases some inputs?

... and this still only works for a particular program and machine.

Example: Linear Search

- Consider the following search function:

```python
def near(L, x, delta):
    """True iff X differs from some member of sequence L by no more than DELTA."
    for y in L:
        if abs(x-y) <= delta:
            return True
    return False
```

- There's a lot here we don't know:
 - How long is sequence L?
 - Where in L is x (if it is)?
 - What kind of numbers are in L and how long do they take to compare?
 - How long do abs and subtract take?
 - How long does it take to create an iterator for L and how long does its `next` operation take?

- So what can we meaningfully say about complexity of `near`?

Worst Case, Average Case

- To avoid the problem of getting results only for particular inputs, we usually ask a more general question, such as:

 - What is the \textit{worst case} time to compute \(f(X) \) as a function of the size of \(X \), or
 - what is the \textit{average case} time to compute \(f(X) \) over all values of \(X \) (weighted by likelihood).

- Average case is hard, so we'll let other courses deal with it.
- But now we seem to have a harder problem than before: how do we get worst-case times? Doesn't that require testing all cases?
- And when we do, aren't we still sensitive to machine model, compiler, etc.?

What to Measure?

- If we want general answers, we have to introduce some "strategic vagueness."
- Instead of looking at times, we can consider number of "operations."
 Which?
 The total time consists of
 1. Some fixed overhead to start the function and begin the loop.
 2. Per-iteration costs: subtraction, abs, `next`, <=
 3. Some cost to end the loop.
 4. Some cost to return.

- So we can collect total operations into one "fixed-cost operation" (items 1, 3, 4), plus \(M(L) \) "loop operations" (item 2), where \(M(L) \) is the number of items in \(L \) up to and including the \(y \) that comes within \(\delta \) of \(x \) (or the length of \(L \) if no match).

Operation Counts and Scaling

- Instead of getting precise answers in units of physical time, we therefore settle for a proxy measure that will remain meaningful over changes in architecture or compiler.
- Choose some operation(s) of interest and count how many times they occur.
- Examples:
 - How many times does \(\text{fib} \) get called recursively during computation of \(\text{fib}(N) \)?
 - How many addition operations get performed by \(\text{fib}(N) \)?
 - You can no longer get precise times, but if the operations are well-chosen, results are proportional to actual time for different values of \(N \).
- Thus, we look at how computation time \textit{scales} in the worst case.
- Can compare programs/algorithms on the basis of which scale better.
Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size \(N \) (assuming perfect scaling and that problem size 1 takes 1 \(\mu \text{sec} \)).
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- \(N = \) problem size

<table>
<thead>
<tr>
<th>Time ((\mu\text{sec})) for problem size (N)</th>
<th>Max (N) Possible in 1 second</th>
<th>Max (N) Possible in 1 hour</th>
<th>Max (N) Possible in 1 month</th>
<th>Max (N) Possible in 1 century</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lg N)</td>
<td>10(^{300000})</td>
<td>10(^{100000000})</td>
<td>10(^{8\times10^11})</td>
<td>10(^{3\times10^13})</td>
</tr>
<tr>
<td>(N)</td>
<td>10(^{6})</td>
<td>3.0 \times 10(^{6})</td>
<td>2.7 \times 10(^{12})</td>
<td>3.2 \times 10(^{15})</td>
</tr>
<tr>
<td>(N \lg N)</td>
<td>63000</td>
<td>1.3 \times 10(^{6})</td>
<td>7.4 \times 10(^{10})</td>
<td>6.9 \times 10(^{13})</td>
</tr>
<tr>
<td>(N^2)</td>
<td>1000</td>
<td>60000</td>
<td>1.6 \times 10(^{6})</td>
<td>5.6 \times 10(^{9})</td>
</tr>
<tr>
<td>(N^3)</td>
<td>100</td>
<td>1500</td>
<td>1.0000</td>
<td>1.500000</td>
</tr>
<tr>
<td>(2^N)</td>
<td>20</td>
<td>32</td>
<td>41</td>
<td>51</td>
</tr>
</tbody>
</table>

Asymptotic Results

- Sometimes, results for "small" values are not indicative.
- E.g., suppose we have a prime-number tester that contains a look-up table of the primes up to 1,000,000,000 (about 50 million primes).
- Tests for numbers up to 1 billion will be faster than for larger numbers.
- So in general, we tend to talk about asymptotic behavior of programs: as size of input goes to infinity.

Expressing Approximation

- So, we are looking for measures of program performance that give us a sense of how computation time scales with size of input.
- And we are further interested in ignoring finite sets of special cases that a given program can compute quickly.
- Finally, precise worst-case functions can be very complicated, and the precision is generally not terribly important anyway.
- These considerations motivate the use of order notation to express approximations of execution time or space.

The Notation

- Suppose that \(f \) is a function of one parameter returning real numbers.
- We use the notation \(O(f) \) to mean "the set of all one-parameter functions whose absolute values are eventually bounded above by some multiple of \(f \)'s absolute value." Formally:
 \[
 O(f) = \{ g \mid |g(x)| \leq p \cdot |f(x)| \text{ when } x > M, \text{ for some constants } p, M \}
 \]
- So we can write \(g \in O(f) \) to mean "whenever \(n \) is large enough, \(|g(n)| \leq p \cdot |f(n)| \) for some constant \(p \).
- We define
 \[
 f \in \Omega(g) \iff g \in O(f).
 \]
- And finally those bounded both above and below:
 \[
 \Theta(f) = \Omega(f) \cap O(f)
 \]
 \[
 = \{ g \mid p_1 \cdot |f(x)| \leq p_2 \cdot |f(x)| \text{ when } x > M \}
 \]
 for some constants \(0 < p_1 \leq p_2 \), and \(M \).

Illustration

- Here, \(f \in O(g) \) (\(p = 2 \), see blue line), even though \(f(x) > g(x) \). Likewise, \(f \in \Omega(g) \) (\(p = 1 \), see red line), and therefore \(f \in \Theta(g) \).
- That is, \(f(x) \) is eventually (for \(x > M = 1 \)) no more than proportional to \(g(x) \) and no less than proportional to \(g(x) \).

Illustration, contd.

- Here, \(f' \in \Omega(g) \) (\(p = 0.5 \)), even though \(g(x) > f'(x) \) everywhere.
Notational Quirks

- You may have seen $O(\cdot)$ notation in math, where we say things like $f(x) \in f(0) + f'(0)x + O(f''(0)x^2)$
- Adding or multiplying sets of functions produces sets of functions. Thus, $x^2 + O(g)$ means "the set of functions of x returning $x^2 + h(x)$, where $h \in O(g)$.
- Well, to be picky, we really ought to write $f \in (\lambda x . f(0) + f'(0)x + \ldots) + O(\lambda x . f''(0)x^2)$
- but that really gets really tedious...
- ...so if $E(x)$ is some expression involving x, we usually abbreviate $\lambda x . E(x)$ as just $E(x)$. Example: $n + 1 \in O(n^2)$
- I prefer \in to the traditional $f(x) = f(0) + \ldots$, since the latter makes no formal sense (the left side is a function and the right is a set of functions.)
- Finally, we will sometimes write $f \in \Theta(g)$ even when f and g are functions of something non-numeric (like lists).

Using Asymptotic Estimates

- Going back to linear search, $\min\text{-fixed-cost} + M(L) \times \min\text{-loop-cost} \leq C_{\text{near}}(L) \leq \max\text{-fixed-cost} + M(L) \times \max\text{-loop-cost}$
- Claim: we can state this more cleanly as $C_{\text{near}}(L) \in O(M(L))$ and $C_{\text{near}}(L) \in \Omega(M(L))$, or even more concisely: $C_{\text{near}}(L) \in \Theta(M(L))$.
- Why? $C_{\text{near}}(M(L)) \in O(M(L))$ if $C_{\text{near}}(M(L)) \leq K \cdot M(L)$ for sufficiently large $M(L)$, by definition.
- And if if K_1 and K_2 are any (non-negative) constants, then $K_1 + K_2 \cdot M(L) \leq (K_1 + K_2) \cdot M(L)$ for $M(L) > 1$.
- Likewise, $K_1 + K_2 \cdot M(L) \geq K_2 \cdot M(L)$ for $M > 0$.
- And we can go even farther. If the sequence, L, has length $N(L)$, then we know that $M(L) \leq N(L)$. Therefore, we can say $C_{\text{near}}(L) \in O(N(L))$.
- Is $C_{\text{near}}(L) \in \Omega(N(L))$? No: can only say $C_{\text{near}}(L) \in \Omega(1)$.

Best/Worst Cases

- We can simplify still further by not trying to give results for particular inputs, but instead giving summary results for all inputs of the same "size."
- Here, "size" depends on the problem: could be magnitude, length (of list), cardinality (of set), etc.
- Since we don't consider specific inputs, we have to be less precise.
- Typically, the figure of interest is the worst case over all inputs of the same size.
- Also makes sense to talk about the best case over all inputs of the same size, or the average case over all inputs of the same size (weighted by likelihood). These are rarer, though.
- From preceding discussion, since $C_{\text{near}}(N(L)) \in O(N(L))$, it follows that $C_{\text{near}}(N) \in O(N)$, where $C_{\text{near}}(N)$ is "worst-case cost of near over all lists of size N.

Best of the Worst

- We just saw that $C_{\text{avg}}(N) \in O(N)$.
- But in addition, it's also clear that $C_{\text{avg}}(N) \in \Omega(N)$.
- So we can say, most concisely, $C_{\text{avg}}(N) \in \Theta(N)$.
- Generally, when a worst-case time is not $\Theta(\cdot)$, it indicates either that
 - We don't know (haven't proved) what the worst case really is, just put limits on it,
 - Most often happens when we talk about the worst-case for a problem: "what's the worst case for the best possible algorithm?"
 - Or we know what the worst-case time is, but it's messy, so we settle for approximations that are easier to deal with.