Lecture #20: Complexity, Continued
def near(L, x, delta):
 """True iff X differs from some member of sequence L by no
 more than DELTA.""
 for y in L:
 if abs(x-y) <= delta:
 return True
 return False

• Would really like $C_{near}(L, x, delta)$, the cost of computing $near(L, x, delta)$.

• But this is very complicated, with so many messy details that result
 is not all that useful.

• So settle for $C_{wc}(N)$, the cost of computing $near(L, x, delta)$ for
 L of size N in the worst case.
Best of the Worst

• From last time, $C_{wc}(N) \in O(N)$.
• But in addition, it’s also clear that $C_{wc}(N) \in \Omega(N)$.
• So we can say, most precisely, $C_{wc}(N) \in \Theta(N)$.
• Generally, when a worst-case time is not $\Theta(\cdot)$, it indicates either that
 - We don’t know (haven’t proved) what the worst case really is, just put limits on it,
 * Most often happens when we talk about the worst-case for a problem: “what’s the worst case for the best possible algorithm?”
 - Or we know what the worst-case time is, but it’s messy, so we settle for approximations that are easier to deal with.
Example: A Nested Loop

- Consider:

```python
def are_duplicates(L):
    for i in range(len(L)-1):
        for j in range(i+1, len(L)):
            if L[i] == L[j]:
                return True
    return False
```

- What can we say about $C(L)$, the cost of computing `are_duplicates` on L?

- How about $C_{wc}(N)$, the worst-case cost of running `are_duplicates` over all sequences of length N?
Example: A Nested Loop (II)

- **Ans:** Worst case is no duplicates. Outer loop runs `len(L) - 1` times. Each time, the inner loop runs `len(L) - i - 1` times. So total time is proportional to
 \[(N - 2) + (N - 3) + \ldots + 1 = (N - 1)(N - 2)/2 \in \Theta(N^2),\]
 where \(N = N(L)\) is the length of \(L\).

- Best case is first two elements are duplicates. Running time is \(\Theta(1)\) (i.e., bounded by constant).

- So, \(C(L) \in O(N(L)^2), C(L) \in \Omega(1)\),

- And \(C_{wc}(N) \in \Theta(N^2)\).
Example from Homework Question

• Why is this slow (in the Link class)?

```python
k = 1
p = self
# Find last element of
while k < len(self):
    p = p.rest
```

• How slow is it?
Example: A Tricky Nested Loop

- What can we say about this one (assume \texttt{pred} counts as one constant-time operation.)

```python
def is_unduplicated(L, pred):
    """True iff the first x in L such that pred(x) is not a duplicate. Also true if there is no x with pred(x).""
    i = 0
    while i < len(L):
        x = L[i]
        i += 1
        if pred(x):
            while i < len(L):
                if x == L[i]:
                    return False
                i += 1
    return True
```

Last modified: Mon Mar 7 15:59:22 2016
Example: A Tricky Nested Loop (II)

- In this case, despite the nested loop, we read each element of L at most once.
- Best case is that $\text{pred}(L[0])$ and $L[0]=L[1]$.
- So $C(L) \in O(N(L))$, $C(L) \in \Omega(1)$.
- And $C_{wc}(N) \in \Theta(N)$.
Fast Growth

• Consider **Hackenmax** (a function from a test some semesters ago):

```python
def Hakenmax(board, X, Y, N):
    if N <= 0:
        return 0
    else:
        return board(X, Y) \\
          + max(Hakenmax(board, X+1, Y, N-1),
                Hakenmax(board, X, Y+1, N-1))
```

• Time clearly depends on \(N \). Counting calls to **board**, \(C(N) \), the cost of calling **Hackenmax** \((board, X, Y, N)\), is

\[
C(N) = \begin{cases}
0, & \text{for } N \leq 0 \\
1 + 2C(N - 1), & \text{otherwise.}
\end{cases}
\]

• Using simple-minded expansion,

\[
C(N) = 1 + 2C(N - 1) = 1 + 2 + 4C(N - 2) = \ldots = 1 + 2 + 4 + 8 + \ldots + 2^{N-1} \in \Theta(2^N).
\]
Consider a problem with this structure:

```python
def tree_find(T, disc):
    p = disc(T.label)
    if p == -1:
        return T.label
    elif T.is_leaf():
        return None
    else:
        return tree_find(T.children[p], disc)
```

Assume that function `disc` takes (no more than) a constant amount of time.
Kinds of Tree

- Assume we are dealing with binary trees (number of children ≤ 2).
- Trees could have various shapes, which we can classify as "shallow" (or "bushy") and "stringy."

Maximally Deep ("Stringy") Tree

Maximally Shallow ("Bushy") Tree
Questions

• How long does the tree_find program (search a tree) take in the worst case on a binary tree (number of children \(\leq 2 \))?
 - 1. As a function of \(D \), the depth of the tree?
 - 2. As a function of \(N \), the number of keys in the tree?
 - 3. As a function of \(D \) if the tree is as shallow as possible for the amount of data?
 - 3. As a function of \(N \) if the tree is as shallow as possible for the amount of data?
Questions

• How long does the `tree_find` program (search a tree) take in the worst case on a binary tree (number of children ≤ 2)?

 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree?
 - 3. As a function of D if the tree is as shallow as possible for the amount of data?
 - 3. As a function of N if the tree is as shallow as possible for the amount of data?
Questions

• How long does the `tree_find` program (search a tree) take in the worst case on a binary tree (number of children ≤ 2)?

 - 1. As a function of \(D \), the depth of the tree? \(\Theta(D) \)
 - 2. As a function of \(N \), the number of keys in the tree? \(\Theta(N) \)
 - 3. As a function of \(D \) if the tree is as shallow as possible for the amount of data?
 - 3. As a function of \(N \) if the tree is as shallow as possible for the amount of data?
Questions

- How long does the `tree_find` program (search a tree) take in the worst case on a binary tree (number of children ≤ 2)?
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree? $\Theta(N)$
 - 3. As a function of D if the tree is as shallow as possible for the amount of data? $\Theta(D)$
 - 3. As a function of N if the tree is as shallow as possible for the amount of data?
Questions

• How long does the `tree_find` program (search a tree) take in the worst case on a binary tree (number of children ≤ 2)?

 - 1. As a function of D, the depth of the tree? $\Theta(D)$

 - 2. As a function of N, the number of keys in the tree? $\Theta(N)$

 - 3. As a function of D if the tree is as shallow as possible for the amount of data? $\Theta(D)$

 - 3. As a function of N if the tree is as shallow as possible for the amount of data? $\Theta(lg\ N)$
Questions

• How long does the `tree_find` program (search a tree) take in the worst case on a binary tree (number of children ≤ 2)?
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree? $\Theta(N)$
 - 3. As a function of D if the tree is as shallow as possible for the amount of data? $\Theta(D)$
 - 3. As a function of N if the tree is as shallow as possible for the amount of data? $\Theta(\lg N)$
Some Useful Properties

• We’ve already seen that $\Theta(K_0N + K_1) = \Theta(N)$ (K, k, K_i here and elsewhere are constants).

• $\Theta(N^k + N^{k-1}) = \Theta(N^k)$. Why?

• $\Theta(|f(N)| + |g(N)|) = \Theta(\max(|f(N)|, |g(N)|))$. Why?

• $\Theta(\log_a N) = \Theta(\log_b N)$. Why? (As a result, we usually use $\log_2 N = \lg N$ for all logarithms.)

• Tricky: why isn’t $\Theta(f(N) + g(N)) = \Theta(\max(f(N), g(N)))$?

• $\Theta(N^{k_1}) \subset \Theta(k_2^N)$, if $k_2 > 1$. Why?