def near(L, x, delta):
 """True iff X differs from some member of sequence L by no
more than DELTA."""
 for y in L:
 if abs(x-y) <= delta:
 return True
 return False

• Would really like \(C_{\text{near}}(L, x, \text{delta}) \), the cost of computing near(L, x, \text{delta}).
• But this is very complicated, with so many messy details that result
is not all that useful.
• So settle for \(C_{\text{wc}}(N) \), the cost of computing near(L, x, \text{delta}) for
L of size \(N \) in the worst case.

Best of the Worst

• From last time, \(C_{\text{wc}}(N) \in O(N) \).
• But in addition, it’s also clear that \(C_{\text{wc}}(N) \in \Omega(N) \).
• So we can say, most precisely, \(C_{\text{wc}}(N) \in \Theta(N) \).
• Generally, when a worst-case time is not \(\Theta(\cdot) \), it indicates either that
 - We don’t know (haven’t proved) what the worst case really is, just
 put limits on it,
 - Most often happens when we talk about the worst-case for a
 problem: “what’s the worst case for the best possible
 algorithm?”
• Or we know what the worst-case time is, but it’s messy, so we settle for approximations that are easier to deal with.

Example: A Nested Loop

• Consider:
 def are_duplicates(L):
 for i in range(len(L)-1):
 for j in range(i+1, len(L)):
 if L[i] == L[j]:
 return True
 return False

• Most can we say about \(C(L) \), the cost of computing are_duplicates
 on L?
• How about \(C_{\text{wc}}(N) \), the worst-case cost of running are_duplicates
 over all sequences of length \(N \)?

Example: A Nested Loop (II)

• Ans: Worst case is no duplicates. Outer loop runs \(\text{len}(L)-1 \) times. Each time, the inner loop runs \(\text{len}(L)-1 \) times. So total time is
 proportional to \((N-2)+(N-3)+\ldots+1 = (N-1)(N-2)/2 \in \Theta(N^2) \),
 where \(N = \text{len}(L) \) is the length of \(L \).
• Best case is first two elements are duplicates. Running time is \(\Theta(1) \)
 (i.e., bounded by constant).
• So, \(C(L) \in O(NL^2), C(L) \in \Omega(1) \),
• And \(C_{\text{wc}}(N) \in \Theta(N^2) \).
Example: A Tricky Nested Loop

- What can we say about this one (assume `pred` counts as one constant-time operation.)

```python
def is_unduplicated(L, pred):
    """True iff the first x in L such that pred(x) is not a duplicate. Also true if there is no x with pred(x)."""
    i = 0
    while i < len(L):
        x = L[i]
        i += 1
        if pred(x):
            while i < len(L):
                if x == L[i]:
                    return False
                i += 1
    return True
```

Example: A Tricky Nested Loop (II)

- In this case, despite the nested loop, we read each element of `L` at most once.
- Best case is that `pred(L[0])` and `L[0]=L[1]`.
- So `C(L)\in O(N(L))`, `C(L)\in \Omega(1)`.
- And `C_{wc}(N)\in \Theta(N)`.

Fast Growth

- Consider `Hackenmax` (a function from a test some semesters ago):

```python
def Hackenmax(board, X, Y, N):
    if N <= 0:
        return 0
    else:
        return board(X, Y) + max(Hackenmax(board, X+1, Y, N-1),
                                  Hackenmax(board, X, Y+1, N-1))
```

- Time clearly depends on `N`. Counting calls to `board`, the cost of calling `Hackenmax(board, X, Y, N)` is

\[
C(N) = \begin{cases}
0, & \text{for } N \leq 0 \\
1 + 2C(N-1), & \text{otherwise.}
\end{cases}
\]

- Using simple-minded expansion,

\[
C(N) = 1+2C(N-1) = 1+2+4C(N-2) = \ldots = 1+2+4+8+\ldots+2^{N-1} \in \Theta(2^N).
\]

Questions

- How long does the `tree_find` program (search a tree) take in the worst case on a binary tree (number of children \(\leq 2\))?
 - 1. As a function of `D`, the depth of the tree?
 - 2. As a function of `N`, the number of keys in the tree?
 - 3. As a function of `D` if the tree is as shallow as possible for the amount of data?
 - 3. As a function of `N` if the tree is as shallow as possible for the amount of data?

Kinds of Tree

- Assume we are dealing with binary trees (number of children \(\leq 2\)).
- Trees could have various shapes, which we can classify as "shallow" (or "bushy") and "stringy.

```
0
 1
 2
 3
 4
 5
 6
```

Maximally Shallow ("Bushy") Tree

```
0
 1
 3 4 5 6
```

Maximally Deep ("Stringy") Tree
Questions

- How long does the tree_find program (search a tree) take in the worst case on a binary tree (number of children ≤ 2)?
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree?
 - 3. As a function of D if the tree is as shallow as possible? amount of data?
 - 3. As a function of N if the tree is as shallow as possible? amount of data?
Questions

- How long does the tree_find program (search a tree) take in the worst case on a binary tree (number of children ≤ 2)?
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree? $\Theta(N)$
 - 3. As a function of D if the tree is as shallow as possible, amount of data?
 - 3. As a function of N if the tree is as shallow as possible, amount of data?
Questions

• How long does the `tree_find` program (search a tree) take in the worst case on a binary tree (number of children ≤ 2)?
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree? $\Theta(D)$
 - 3. As a function of D if the tree is as shallow as possible amount of data? $\Theta(D)$
 - 3. As a function of N if the tree is as shallow as possible amount of data?
Questions

• How long does the tree_find program (search a tree) take in the worst case on a binary tree (number of children ≤ 2)?
 1. As a function of D, the depth of the tree? $\Theta(D)$
 2. As a function of N, the number of keys in the tree? Θ?
 3. As a function of D if the tree is as shallow as possible amount of data? $\Theta(D)$
 3. As a function of N if the tree is as shallow as possible amount of data? $\Theta(lg N)$
Questions

- How long does the `tree_find` program (search a tree) take in the worst case on a binary tree (number of children \(\leq 2 \))?
 - 1. As a function of \(D \), the depth of the tree? \(\Theta(D) \)
 - 2. As a function of \(N \), the number of keys in the tree? \(\Theta(N) \)
 - 3. As a function of \(D \) if the tree is as shallow as possible amount of data? \(\Theta(D) \)
 - 3. As a function of \(N \) if the tree is as shallow as possible amount of data? \(\Theta(\log N) \)
Some Useful Properties

- We’ve already seen that $\Theta(K_0N + K_1) = \Theta(N)$ (K_0, K_1, here and elsewhere are constants).
- $\Theta(N^3 + N^{k-1}) = \Theta(N^3)$. Why?
- $\Theta(|f(N)| + |g(N)|) = \Theta(\max(|f(N)|, |g(N)|))$. Why?
- $\Theta(\log_2 N) = \Theta(\log_b N)$. Why? (As a result, we usually use $\log_2 N = \lg N$ for all logarithms.)
- Tricky: why isn’t $\Theta(f(N) + g(N)) = \Theta(\max(f(N), g(N)))$?
- $\Theta(N^{k_2}) \subset \Theta(k_2^N)$, if $k_2 > 1$. Why?