Lecture #21: Search and Sets
Announcements

• My office hours this Thursday (only) are 3-4PM.
• Homework 5 to be released later today. Many problems on it were just the optional ones from this week’s lab.
Container Objects and Searching

- Lists, linked lists, trees, and dictionaries are various objects whose principle purpose is to contain values and present them in various ways.

- We've principally considered operations that involve retrieving all values and doing something with them.

- But a central activity of many programs and algorithms is finding a value that meets certain criteria in one of these containers.

- Several Python data structures provide methods for finding:

  ```python
  x in aList  # Is x in aList?
  x in aDict  # Is x a key in aDict?
  aDict[x]    # What is V if aDict contains the entry (x, V)?
  "61A" in text # Does substring '61A’ appear in string text?
  ```
Sets

• Current versions of Python also have *sets*, which are intended to behave like mathematical sets.

• Examples:

```python
A = { 1, 3, 2 }   # Definition by extension
B = set([1, 3, 5]) # Contents can come from an iterable
set()            # The empty set
{}               # The empty dictionary (sorry)
{x for x in L if x % 2 == 1} # Set generator: odd members of L
    # Like \{x|x ∈ L and x is odd \}
A | B == { 1, 2, 3, 5 } == A.union(B)
    # A ∪ B
A & B == { 1, 3 } == A.intersection(B)
A - B == { 2 } == A.difference(B) == { x for x in A if x not in B }
A < (A | B) == True    # A ⊂ A ∪ B
3 in A == True         # 3 ∈ A
len(A) == 3            # |A| or size of A
```
Sets are Iterables

- Like other container types, one can iterate over sets.
- Python sets are **unordered**: ordering of iterator results is undefined.

```python
>>> for x in { 5000, 3000, 100 }: print(x, end=" ")
3000 5000 100
>>> list( { 5000, 3000, 100 } )
[3000, 5000, 100]
```
Example

How can I test whether a list contains duplicates?

def hasDuplicates(L):
 """Return true iff list L contains duplicated values."""

CS61A: Lecture #21 6
Implementing Sets: Unordered Lists

- Clearly, lists also contain collections of values, so we could use them to implement sets.

- Must be careful to avoid duplicate elements (important when iterating).

- The algorithm for "member of" ($x \text{ in } S$) is familiar:

  ```python
def contains(S, x):
    """True iff list S (considered as a set) contains x.""
    for y in S:
      if x == y:
        return True
    return False
  ```

- If N is the length of S, what is the worst-case time bound?
Implementing Sets: Unordered Lists

• Clearly, lists also contain collections of values, so we could use them to implement sets.

• Must be careful to avoid duplicate elements (important when iterating).

• The algorithm for “member of” \((x \text{ in } S)\) is familiar:

\[
\text{def contains(S, x):}
\]
\[
\quad \text{"""True iff list S (considered as a set) contains x.""""}
\]
\[
\quad \text{for y in S:}
\]
\[
\quad \quad \text{if x == y:}
\]
\[
\quad \quad \quad \text{return True}
\]
\[
\quad \text{return False}
\]

• If \(N\) is the length of \(S\), what is the worst-case time bound? \textbf{Answer:} \(\Theta(N)\)
Implementing Sets: Insertion/Formation w/ Unordered List

What’s the time required for this? Assume appending to a list takes \(O(1)\) time (which is true on average).

def toSet(L):
 """Returns an unordered list containing all values in L without duplicates."""
 result = []
 for x in L:
 if not contains(result, x):
 result.append(x)
 return result
Implementing Sets: Insertion/Formation w/ Unordered List

What’s the time required for this? Assume appending to a list takes $O(1)$ time (which is true on average).

def toSet(L):

 """Returns an unordered list containing all values in L without duplicates."""
 result = []
 for x in L:
 if not contains(result, x):
 result.append(x)
 return result

Answer: $\Theta(N^2)$
Implementing Sets: Ordered Lists

• If we keep list sorted (say in ascending order), can use *binary search*:

```python
def contains(S, x):
    """Returns true if X is in S, a list sorted in ascending order.""
    L, U = 0, len(S)-1
    while L <= U:
        M = (L + U) // 2
        if x == S[M]:
            return True
        elif x < S[M]:
            U = M - 1
        else:
            L = M + 1
    return False
```

• What’s the execution time here (if \(N \) is \(\text{len}(S) \))?
Implementing Sets: Ordered Lists

- If we keep list sorted (say in ascending order), can use binary search:

```python
def contains(S, x):
    """Returns true if X is in S, a list sorted in ascending order.""
    L, U = 0, len(S)-1
    while L <= U:
        M = (L + U) // 2
        if x == S[M]:
            return True
        elif x < S[M]:
            U = M - 1
        else:
            L = M + 1
    return False
```

- What’s the execution time here (if \(N \) is \(\text{len}(S) \))? **Answer:** \(\Theta(\lg N) \)
Implementing Sets: Insertion/Formation w/ Ordered List

What’s the time required for this? Assume appending to a list takes $O(1)$ time (which is true on average).

```python
def toSet(LST):
    """Returns an ordered list containing all values in LST without duplicates."""
    result = []
    for x in lst:
        L, U = 0, len(result)-1
        while L <= U:
            M = (L + U) // 2
            if x == result[M]:
                break
            elif x < result[M]:
                U = M - 1
            else:
                L = M + 1
        if L > U:
            result.insert(L, x)
```

Implementing Sets: Insertion/Formation w/ Ordered List

What's the time required for this? Assume appending to a list takes $O(1)$ time (which is true on average).

```python
def toSet(LST):
    """Returns an ordered list containing all values in LST without duplicates."""
    result = []
    for x in lst:
        L, U = 0, len(result)-1
        while L <= U:
            M = (L + U) // 2
            if x == result[M]:
                break
            elif x < result[M]:
                U = M - 1
            else:
                L = M + 1
        if L > U:
            result.insert(L, x)

Answer: $\Theta(N^2)$
Binary Search Trees

Binary Search Property:

- In a *binary tree*, each inner node has two children (called “left” and “right”, typically), but trees are allowed to be *empty* (no label, no children).
- A *binary search tree* (BST) satisfies two other properties:
  - All nodes in left subtree of a node have *smaller* keys.
  - All nodes in right subtree of node have *larger* keys.
  - This allows binary search, but in a tree.
Finding

• Searching for 50 and 49:

```
def contains(S, x):
 """Returns true iff BST S contains x.""
 if S == BinTree.empty:
 return False
 if S.label == x:
 return True
 elif S.label < x:
 return contains(S.right, x)
 else:
 return contains(S.left, x)
```

• Dashed boxes show which node labels we look at.

• Number looked at proportional to height of tree.

• What is worst-case time?

• If tree is “bushy,” what is worst-case time?
Finding

• Searching for 50 and 49:

```python
def contains(S, x):
 """Returns true iff BST S contains x."""
 if S == BinTree.empty:
 return False
 if S.label == x:
 return True
 elif S.label < x:
 return contains(S.right, x)
 else:
 return contains(S.left, x)
```

• Dashed boxes show which node labels we look at.

• Number looked at proportional to height of tree.

• What is worst-case time? Answer: $\Theta(N)$

• If tree is “bushy,” what is worst-case time?
Finding

• Searching for 50 and 49:

```python
def contains(S, x):
 """Returns true iff BST S contains x.""
 if S == BinTree.empty:
 return False
 if S.label == x:
 return True
 elif S.label < x:
 return contains(S.right, x)
 else:
 return contains(S.left, x)
```

• Dashed boxes show which node labels we look at.
• Number looked at proportional to height of tree.
• What is worst-case time? **Answer:** $\Theta(N)$
• If tree is “bushy,” what is worst-case time? **Answer:** $\Theta(\lg N)$
Inserting

• Inserting 27

```
def add(S, x):
 """Add X to binary search tree S destructively, if not already present, returning new tree."""
 if S == BinTree.empty:
 return BinTree(x)
 elif S.label < x:
 S.right = add(S.right, x)
 else:
 S.left = add(S.left, x)
 return S
```

• Starred edges are set (to themselves, unless initially null).
• Again, time proportional to height.
What Does Python Do?

• Python uses a different method to store sets (also dictionaries).

• In effect, instead of a binary search tree, uses an \textit{n-ary tree with height 2}.

• Instead of using $<$, $>$, uses a more general \textit{hashing function}.

• \textit{Usually}, this gives $\Theta(1)$ for searches.

• Take CS61B for details.