Lecture #23: The Scheme Language

Scheme is a dialect of Lisp:

- "The only programming language that is beautiful."
 —Neal Stephenson
- "The greatest single programming language ever designed"
 —Alan Kay

Scheme Background

- The programming language Lisp is the second-oldest programming language still in use (introduced in 1958).
- Scheme is a Lisp dialect invented in the 1970s by Guy Steele ("The Great Quux"), who has also participated in the development of Emacs, Java, and Common Lisp.
- Designed to simplify and clean up certain irregularities in Lisp dialects at the time.
- Used in a fast Lisp compiler (Rabbit).
- Still maintained by a standards committee (although both Brian Harvey and I agree that recent versions have accumulated an unfortunate layer of cruft).

Data Types

- We divide Scheme data into atoms and pairs.
- The classical atoms:
 - Numbers: integer, floating-point, complex, rational.
 - Symbols.
 - Booleans: #t, #f.
 - The empty list: ()
 - Procedures (functions).
- Some newer-fangled, mutable atoms:
 - Vectors: Python lists.
 - Strings.
 - Characters: Like Python 1-element strings.
- Pairs are two-element tuples, where the elements are (recursively) Scheme values.

Symbols

- Lisp was originally designed to manipulate symbolic data: e.g., formulae as opposed merely to numbers.
- Typically, such data is recursively defined (e.g., "an expression consists of an operator and subexpressions").
- The "base cases" had to include numbers, but also variables or words.
- For this purpose, Lisp introduced the notion of a symbol:
 - Essentially a constant string.
 - Two symbols with the same "spelling" (string) are by default the same object (but usually, case is ignored).
- The main operation on symbols is equality.
- Examples:
 a bumblebee numb3rs ** wide-ranging !?@*!!
 (As you can see, symbols can include non-alphanumeric characters.)

Pairs and Lists

- The Scheme notation for the pair of values V_1 and V_2 is (V_1, V_2)
- As we've seen, one can build practically any data structure out of pairs.
- In Scheme, the main one is the list, defined recursively like an rlist:
 - The empty list, written "()", is a list.
 - The pair consisting of a value V and a list L is a list that starts with V, and whose tail is L.
- Lists are so prevalent that there is a standard abbreviation:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>(V, 0)</td>
</tr>
<tr>
<td>(V_1 V_2 · · · V_n)</td>
<td>(V_1, (V_2, · · · (V_n, 0)))</td>
</tr>
<tr>
<td>(V_1 V_2 · · · V_{n-1} V_n)</td>
<td>(V_1, (V_2, · · · (V_{n-1}, V_n)))</td>
</tr>
</tbody>
</table>

Examples of Pairs and Lists

```
(3 . 2)
(x = 3)
(+ (+ 3 7) (- x))
(a+ . 289) (a . 269) (a- . 255)
```
Programs

• Scheme expressions and programs are instances of Lisp data structures ("Scheme programs are Scheme data").
• At the bottom, numerals, booleans, characters, and strings are expressions that stand for themselves.
• Most lists (aka forms) stand for function calls:

\[(OP \ E_1 \ \ldots \ \ E_n)\]

as a Scheme expression means "evaluate \(OP\) and the \(E_i\) (recursively), and then apply the value of \(OP\), which must be a function, to the values of the arguments \(E_i\)."

• Examples:

\[(> 3 2) \quad ; \quad 3 > 2 \implies \#t \]
\[(- (/ (* (+ 3 7 10) (- 1000 8)) 992) 17) \quad ; \quad ((3+7+10)-(1000-8))/992-17 \]
\[(pair? (list 1 2)) \quad ; \quad \implies \#t \]

Quotation

• Since programs are data, we have a problem: How do we say, e.g., "Set the variable \(x\) to the three-element list \((+ 2\) 2\)" without it meaning "Set the variable \(x\) to the value 3?"
• In English, we call this a use vs. mention distinction.
• For this, we need a special form—a construct that does not simply evaluate its operands.
• (quote \(E\)) yields \(E\) itself as the value, without evaluating it as a Scheme expression:

\[\text{smod> (quote (+ 1 2))} \quad \]
\[\text{3} \]
\[\text{smod> (quote (+ 1 2))} \quad (+ 1 2) \quad ; \quad \text{Shorthand. Converted to (quote (+ 1 2))} \quad (+ 1 2) \]
• How about

\[\text{smod> (quote (1 2 '(3 4)))} \quad ?\]

Special Forms

• (quote \(E\)) is a special form: an exception to the general rule for evaluating functional forms.
• A few other special forms—lists identified by their \(OP\)—also have meanings that generally do not involve simply evaluating their operands:

\[\text{(if (> x y) x y)} \quad ; \quad \text{Like Python ... if ... else ...} \]
\[\text{(and (integer?) (> x y) (< x z))} \quad ; \quad \text{Like Python 'and'} \]
\[\text{(or (not (integer? x)) (< x l) (> x u))} \quad ; \quad \text{Like Python 'or'} \]
\[\text{(lambda (x y) (/ (* x x) y))} \quad ; \quad \text{Like Python lambda yields function} \]
\[\text{(define pi 3.14159265359)} \quad ; \quad \text{Definition} \]
\[\text{(define (f x) (* x x))} \quad ; \quad \text{Function Definition} \]
\[\text{(set! pi 3)} \quad ; \quad \text{Assignment ("set bang")} \]

Traditional Conditionals

Also, the fancy traditional Lisp conditional form:

\[\text{smod> (define x 5)} \quad \]
\[\text{smod> (cond ((< x 1) 'small) \quad ((< x 3) 'medium) \quad ((< x 5) 'large) \quad (#t 'big))} \quad \text{big} \]

Symbols

• When evaluated as a program, a symbol acts like a variable name.
• Variables are bound in environments, just as in Python, although the syntax differs.
• To define a new symbol, either use it as a parameter name (later), or use the "define" special form:

\[\text{(define pi 3.1415926)} \quad \text{(define pi*2 (* pi pi))}\]
• This (re)defines the symbols in the current environment. The second expression is evaluated first.
• To assign a new value to an existing binding, use the set! special form:

\[\text{(set! pi 3)} \quad \text{Here, \(pi\) must be defined, and it is that definition that is changed (not like Python).} \]

Function Evaluation

• Function evaluation is just like Python: same environment frames, same rules for what it means to call a user-defined function.
• To create a new function, we use the lambda special form:

\[\text{smod> (lambda (x y) (+ (* x x) (* y y))) 3 4)} \quad 25 \]
\[\text{smod> (define fib} \quad (\lambda (n) (if (< n 2) n (+ (fib (- n 2) (- n 1))))) \quad \text{smod> (fib 5)} \quad 5 \]
• The last is so common, there's an abbreviation:

\[\text{smod> (define (fib n)} \quad (if (< n 2) n (+ (fib (- n 2) (- n 1)))))\]
Numbers

- All the usual numeric operations and comparisons:
 - SCM>
 - \((- (quotient (* (+ 3 7 10) (- 1000 8)) 992) 17)\)
 3
 - SCM>
 - \((/ 3 2)\)
 1.5
 - SCM>
 - \((quotient 3 2)\)
 1
 - SCM>
 - \((> 7 2)\)
 #t
 - SCM>
 - \((< 2 4 8)\)
 #t
 - SCM>
 - \((= 3 (+ 1 2) (- 4 1))\)
 #t
 - SCM>
 - \((integer? 5)\)
 #t
 - SCM>
 - \((integer? 'a)\)
 #f

Lists and Pairs

- Pairs (and therefore lists) have a basic constructor and accessors:
 - SCM>
 - \((cons 1 2)\)
 (1 . 2)
 - SCM>
 - \((cons 'a (cons 'b '()))\)
 (a b)
 - SCM>
 - \((define L (a b c))\)
 a
 - SCM>
 - \((cdr L)\)
 (b c)
 - SCM>
 - \((cddr L)\)
 (cadr L)
 - SCM>
 - \((cdddr L)\)
 ()

- And one that is especially for lists:
 - SCM>
 - \((list (+ 1 2) 'a 4)\)
 (3 a 4)
 - SCM>
 - \; Why not just write \((+ 1 2) a 4)\?

Binding Constructs: Let

- Sometimes, you’d like to introduce local variables or named constants.
- The `let` special form does this:
 - SCM>
 - \(\((define x 17)\)\)
 - SCM>
 - \(\(let ((x 5)\)
 \((y (+ x 2)))\)
 \((+ x y))\)
 24

- This is a derived form, equivalent to:
 - SCM>
 - \((\lambda (x y) (+ x y))\)
 5 (+ x 2))

Loops and Tail Recursion

- With just the functions and special forms so far, can write anything.
- But there is one problem: how to get an arbitrary iteration that doesn’t overflow the execution stack because recursion gets too deep?
- In Scheme, tail-recursive functions must work like iterations.

Loops and Tail Recursion (II)

This means that in this program:

```
Scheme
(define (fib n)
  (define (fib1 n1 n2 k)
    (if (= k n) n2
       (fib1 (+ n1 n2) (* n1 n2) (+ k 1))))
  (if (= n 0) 0 (fib1 0 1 1)))
```

```
Python
def fib(n):
    if n == 0:
        return 0
    else:
        return fib(n-1) + fib(n-2)
```

To call `fib1` recursively, we replace the call on `fib1` with the recursive call.

A Simple Example

- Consider:
 - `(define (sum init L)
 (if (null? L) init
 (sum (+ init (car L)) (cdr L))))`

- Here, can evaluate a call by substitution, and then keep replacing subexpressions by their values or by simpler expressions:
 - `(sum 0 '(1 2 3))`
 - `(sum (+ 0 (car '(1 2 3))) (cdr '(1 2 3)))`
 - `(sum (+ 0 1) '(2 3))`
 - `(sum 1 '(2 3))`
 - `(sum 0 '(2 3)) 1 (sum ...))`

etc.