Lecture #22: The Scheme Language

Scheme is a dialect of Lisp:

- “The only programming language that is beautiful.”
 —Neal Stephenson

- “The greatest single programming language ever designed”
 —Alan Kay

![Comic strip](Image of comic strip)
Scheme Background

- The programming language Lisp is the second-oldest programming language still in use (introduced in 1958).

- Scheme is a Lisp dialect invented in the 1970s by Guy Steele ("The Great Quux"), who has also participated in the development of Emacs, Java, and Common Lisp.

- Designed to simplify and clean up certain irregularities in Lisp dialects at the time.

- Used in a fast Lisp compiler (Rabbit).

- Still maintained by a standards committee (although both Brian Harvey and I agree that recent versions have accumulated an unfortunate layer of cruft).
Data Types

• We divide Scheme data into **atoms** and **pairs**.

• The classical atoms:
 - Numbers: integer, floating-point, complex, rational.
 - Symbols.
 - Booleans: #t, #f.
 - The empty list: ()
 - Procedures (functions).

• Some newer-fangled, mutable atoms:
 - Vectors: Python lists.
 - Strings.
 - Characters: Like Python 1-element strings.

• Pairs are like two-element Python lists, where the elements are (recursively) Scheme values.
Symbols

• Lisp was originally designed to manipulate *symbolic data*: e.g., formulae as opposed merely to numbers.

• Typically, such data is recursively defined (e.g., “an expression consists of an operator and subexpressions”).

• The “base cases” had to include numbers, but also variables or words.

• For this purpose, Lisp introduced the notion of a *symbol*:
 - Essentially a constant string.
 - Two symbols with the same “spelling” (string) are by default the same object (but usually, case is ignored).

• The main operation on symbols is *equality*.

• Examples:

 a bumblebee numb3rs * + / wide-ranging !?@*!!

 (As you can see, symbols can include non-alphanumeric characters.)
Pairs and Lists

- The Scheme notation for the pair of values V_1 and V_2 is
 $$(V_1 \ . \ V_2)$$

- As we’ve seen, one can build practically any data structure out of pairs.

- In Scheme, the main one is the (linked) list, defined recursively like an rlist:
 - The empty list, written “()”, is a list.
 - The pair consisting of a value V and a list L is a list that starts with V, and whose tail is L.

- Lists are so prevalent that there is a standard abbreviation:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>$(V \ . \ ())$</td>
</tr>
<tr>
<td>$(V_1 \ V_2 \ \cdots \ V_n)$</td>
<td>$(V_1 \ . \ (V_2 \ . \ (\cdots \ (V_n \ . \ ()))))$</td>
</tr>
<tr>
<td>$(V_1 \ V_2 \ \cdots \ V_{n-1} \ . \ V_n)$</td>
<td>$(V_1 \ . \ (V_2 \ . \ (\cdots \ (V_{n-1} \ . \ V_n)))))$</td>
</tr>
</tbody>
</table>
Examples of Pairs and Lists

(3 . 2)

(x = 3)

(+ (* 3 7) (- x))

((a+ . 289) (a . 269) (a- . 255))
Programs

- Scheme expressions and programs are instances of Lisp data structures (“Scheme programs are Scheme data”).

- At the bottom, numerals, booleans, characters, and strings are expressions that stand for themselves.

- Most lists (aka forms) stand for function calls:
 \[
 (OP \ E_1 \ \cdots \ E_n)
 \]
 as a Scheme expression means “evaluate \(OP\) and the \(E_i\) (recursively), and then apply the value of \(OP\), which must be a function, to the values of the arguments \(E_i\).”

- Examples:

 \[
 (> 3 2) \quad ; \quad 3 > 2 \implies \text{#t}

 (- (/ (* (+ 3 7 10) (- 1000 8)) 992) 17)
 \quad ; \quad ((3 + 7 + 10) \cdot (1000 - 8))/992 - 17

 (pair? (list 1 2)) \quad ; \quad \implies \text{#t}
 \]
Quotation

- Since programs are data, we have a problem: How do we say, eg., “Set the variable \(x \) to the three-element list \((+ 1 2)\)” without it meaning “Set the variable \(x \) to the value 3?”

- In English, we call this a use vs. mention distinction.

- For this, we need a special form—a construct that does not simply evaluate its operands.

- \((quote \ E)\) yields \(E \) itself as the value, without evaluating it as a Scheme expression:

```
scm> (+ 1 2)
3
scm> (quote (+ 1 2))
(+ 1 2)
scm> '(+ 1 2) ; Shorthand. Converted to (quote (+ 1 2))
(+ 1 2)
```

- How about

```
scm> (quote (1 2 '(3 4))) ;;?
```
Special Forms

• (quote E) is a **special form**: an exception to the general rule for evaluating functional forms.

• A few other special forms—lists identified by their OP—also have meanings that generally do not involve simply evaluating their operands:

 (if (> x y) x y) ; Like Python ... if ... else ...

 (and (integer?) (> x y) (< x z)) ; Like Python 'and'

 (or (not (integer? x)) (< x L) (> x U)) ; Like Python 'or'

 (lambda (x y) (/ (* x x) y)) ; Like Python lambda
 ; yields function

 (define pi 3.14159265359) ; Definition
 (define (f x) (* x x)) ; Function Definition
 (set! x 3) ; Assignment ("set bang")
Traditional Conditionals

Also, the fancy traditional Lisp conditional form:

```lisp
(scm> (define x 5)
(scm> (cond ((< x 1) 'small)
          ((< x 3) 'medium)
          ((< x 5) 'large)
          (#t    'big))

big

which is the Lisp version of Python's

"small" if x < 1 else "medium" if x < 3 else "large" if x < 5 else "big"
```
Symbols

- When evaluated as a program, a symbol acts like a variable name.
- Variables are bound in environments, just as in Python, although the syntax differs.
- To define a new symbol, either use it as a parameter name (later), or use the “define” special form:

  ```lisp
  (define pi 3.1415926)
  (define pi**2 (* pi pi))
  ```

- This (re)defines the symbols in the current environment. The second expression is evaluated first.
- To assign a new value to an existing binding, use the `set!` special form:

  ```lisp
  (set! pi 3)
  ```

- Here, `pi` must be defined, and it is that definition that is changed (not like Python).
Function Evaluation

- Function evaluation is just like Python: same environment frames, same rules for what it means to call a user-defined function.

- To create a new function, we use the `lambda` special form:

  ```scheme
  scm> ( (lambda (x y) (+ (* x x) (* y y))) 3 4)
  25
  scm> (define fib
        (lambda (n) (if (< n 2) n (+ (fib (- n 2)) (fib (- n 1))))))
  scm> (fib 5)
  5
  ```

- The last is so common, there’s an abbreviation:

  ```scheme
  scm> (define (fib n)
        (if (< n 2) n (+ (fib (- n 2)) (fib (- n 1))))
  ```
Numbers

- All the usual numeric operations and comparisons:

  ```scheme
  scm> (- (quotient (* (+ 3 7 10) (- 1000 8)) 992) 17)
  3
  scm> (/ 3 2)
  1.5
  scm> (quotient 3 2)
  1
  scm> (> 7 2)
  #t
  scm> (< 2 4 8)
  #t
  scm> (= 3 (+ 1 2) (- 4 1))
  #t
  scm> (integer? 5)
  #t
  scm> (integer? 'a)
  #f
  ```
Lists and Pairs

• Pairs (and therefore lists) have a basic constructor and accessors:

 scm> (cons 1 2)
 (1 . 2)
 scm> (cons 'a (cons 'b '()))
 (a b)
 scm> (define L (a b c))
 scm> (car L)
 a
 scm> (cdr L)
 (b c)
 scm> (cadr L) ; (car (cdr L))
 b
 scm> (cdddr L) ; (cdr (cdr (cdr L)))
 ()

• And one that is especially for lists:

 scm> (list (+ 1 2) 'a 4)
 (3 a 4)
 scm> ; Why not just write ((+ 1 2) a 4)?
Binding Constructs: Let

- Sometimes, you’d like to introduce local variables or named constants.

- The `let` special form does this:

  ```scheme
  scm> (define x 17)
  scm> (let ((x 5)
             (y (+ x 2)))
       (+ x y))
  24
  ```

- This is a derived form, equivalent to:

  ```scheme
  scm> ((lambda (x y) (+ x y)) 5 (+ x 2))
  ```
Loops and Tail Recursion

• With just the functions and special forms so far, can write anything.
• But there is one problem: how to get an arbitrary iteration that doesn’t overflow the execution stack because recursion gets too deep?
• In Scheme, *tail-recursive functions must work like iterations.*
Loops and Tail Recursion (II)

• This means that in this program:

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Python</th>
</tr>
</thead>
</table>
| (define (fib n) | def fib(n):
| (define (fib1 n1 n2 k) | def fib1(n1, n2, k):
| | return \ |
| | n2 if k == n \ |
| | else fib1(n2, n1+n2, k+1)
| | return 0 if n == 0 \ |
| | else fib1(0, 1, 1) |
| (fib1 n2 | |
| (+ n1 n2) | |
| (+ k 1))) | |
| (if (= n 0) 0 (fib1 0 1 1)) | |

Rather than having one call of `fib1` recursively call itself, we replace the outer call on `fib1 ((fib1 0 1 1))` with the recursive call `((fib1 1 1 2))`, and then replace that with `(fib1 1 2 3)`, then `(fib1 2 3 4)`, etc.

• At each inner tail-recursive call, in other words, we forget the sequence of calls that got us there, so the system need not use more memory to go deeper.
A Simple Example

- Consider

\[
\text{(define (sum init L)}
 \quad \text{(if (null? L) init)}
 \quad \text{(sum (+ init (car L)) (cdr L)))}
\]

- Here, can evaluate a call by substitution, and then keep replacing subexpressions by their values or by simpler expressions:

\[
\text{(sum 0 '(1 2 3))}
\]
\[
\text{(if (null? '(1 2 3)) 0 (sum ...))}
\]
\[
\text{(if #f 0 (sum (+ 0 (car '(1 2 3))) (cdr '(1 2 3))))}
\]
\[
\text{(sum (+ 0 (car '(1 2 3))) (cdr '(1 2 3)))}
\]
\[
\text{(sum (+ 0 1) '(2 3))}
\]
\[
\text{(sum 1 '(2 3))}
\]
\[
\text{(if (null? '(2 3)) 1 (sum ...))}
\]
\[
\text{(if #f 1 (sum (+ 1 (car '(2 3))) (cdr '(2 3))))}
\]
\[
\text{(sum (+ 1 (car '(2 3))) (cdr '(2 3)))}
\]

etc.