
1

Practice ED!

� (define x 10)
� (define (foo y)

(let ((x 20)
(f (lambda (z) (y))))

(f 14)))
� (foo (lambda () x))

Mutable Data…

…mutations mwahahaha….

So far…

� So first off, for ADTs we know how to
� create them (constructors)
� get info from them (selectors)

� Now it’s time to find out how to change
them!

Intro to Mutations

� So basically everything in Scheme is
represented in pairs.

� So remember cons creates a pointer to a
pair, where the car is a pointer to the first
element, and the cdr is a pointer to the
last…

2

Pointers…

� So if you’ve programmed in other
languages such as Java & C you know
what these are.

� So we have 2 mutators…
�set-car!

�set-cdr!

Set-car! & Set-cdr!
� set-car!

�Does what you think it does…it sets the car of
a pair to be a value so….
(set-car! x y) means to change the car of x to
point to y

� set-cdr!
� It sets the cdr of a pair to be a value

(set-cdr! x y) means to change the cdr of x to
point to y

� *note* usually ‘!’ means change in
Scheme

Mutators in action!
� (define x (cons 1 2))

� (1 . 2)

� (define y (list 1 2 3))
� (1 2 3)

� (set-car! x y)

� x
� ((1 2 3) . 2)

� (set-cdr! (cddr y) (cdr x))

� y
� (1 2 3 . 2)

Let’s do some…

> (define x (list (list 'to 'be)))
> (define y (list 'or 'not))
> (set-cdr! x y)
> x
> y
> (set-cdr! (cdr y) (car x))
> x
> y

3

Answers…
> (define x (list (list 'to 'be)))

x
> (define y (list 'or 'not))

y
> (set-cdr! x y)

okay
> x

((to be) or not)
> y

(or not)
> (set-cdr! (cdr y) (car x))

okay
> x

((to be) or not to be)
> y

(or not to be)

Mutation Practice

X-Men…
(set-car! x1 _____)
(set-car! _____ ‘x)
(set-cdr! _____ _____)
(set-cdr! x1 _____)
(set-cdr! _____ ‘x)

2 3 4 5

1 6

2 3 4 6

2 3 4

xx

x1 �x1 � BEFORE AFTER

Mutation Answer

� X-Men…
(set-car! x1 (cadr x1))
(set-car! (cdr x1) ‘x)
(set-cdr! (cddr x1) (cdr x1))
(set-cdr! x1 (cddr x1))
(set-cdr! (cddr x1) ‘x)

Eq? vs. Equal?

� What’s the difference?

�equal? tests for whether or not two symbols
are equal.

�eq? tests for pointer equality.

4

Eq? vs. Equal?
� Let’s take an example…

� (define x (cons 1 2))
� (define y (cons 1 2))
� (eq? x y) � #f
� (equal? x y) � #t
� (set-car! x y)
� (eq? (car x) y) � #t

� Still confused?
� The EQ? story…

� Make sure you use these two predicates
correctly!

Another helpful predicate…
� memq

� Works like member, but this is for pointer equality.
STk> (define x (list 1 2))
okay
STk> (define y (list x x))
okay
STk> (memq 1 x)
(1 2)
STk> (memq y x)
#f
STk> (memq x y)
((1 2) (1 2))
STk> (define z (list 1 2))
okay
STk> (memq x z)
#f

Equivalent?

� As you can see we changed the structure
of x and y using our mutators.

� Now when we define an ADT we can
define a constructor, selectors, and
mutators. Many people wonder why the
following are not equivalent:
(set-cdr! x y) equivalent to ? (set! (cdr x) y)

Equivalent?

(set-cdr! x y) equivalent to ? (set! (cdr x) y)

� NO, these examples are not equivalent.

� Set! changes values.

� set-car/cdr! changes pointers! Very very
different.

� Now lets look at some examples of data
structures that use mutation frequently.

5

Stacks, Trees, & Queues
� Stacks

A last-in first-out queue in which we keep track
of pointers to the top element and the next to top
element.

� Trees
We already know about trees, but look forward
to 61b where you will learn about balanced-
trees, tree-rotations, removing and adding
elements to all kinds of trees.

� Queues and Deques
A first-in first-out structure that needs to keep
track of the first and next element. (A deque is a
double-ended queue). (in book if you’re
interested!)

More Problems!

� Write remove-dupls! which takes a list and
removes all the duplicate elements of a non-
empty list. You may not construct new pairs, ie
use cons or anything like that.

� (define x (list ‘a ‘b ‘b ‘a))

� (remove-dupls! x) � [returns something]
� x � (b a)

Answer: remove-dupls

� (define (remove-dupls lst)
(cond ((null? (cdr lst)) lst)

((member (car lst) (cdr lst))
(set-car! lst (cadr lst))
(set-cdr! lst (cddr lst))
(remove-dupls! lst))

(else (remove-dupls! (cdr lst)))))

More Mutations!

� Write merge! which takes in two lists and
behaves in this manner…

� (define x (list 1 3 5 7))
� (define y (list 2 4 6))
� (merge! x y) � (1 2 3 4 5 6 7)
� x � (1 2 3 4 5 6 7)
� y � (2 3 4 5 6 7)
DO NOT ALLOCATE NEW PAIRS!!!

6

Answer: merge!

� (define (merge! x y)
(cond ((null? x) y)

((null? y) x)
((< (car x) (car y))
(set-cdr! x (merge! (cdr x) y))
x)

(else
(set-cdr! y (merge! x (cdr y)))
y)))

Next Time:
Streams & Midterm
Review…

...row, row, row your boat…

