
1

Scheme in
Scheme?!?

…the metacircular evaluator…

What We’ve Learned…

� Implement functional programming
The basic operations of a computer that can be used as
a building block for further layers of complexity.

� Create data abstractions
Used to simplify our understanding of CS and to invent
solutions to problems that a computer can mirror.

� Implement message passing
Used to implement OOP - furthering a grandiose type of
ADT, Multiple Independant Intelligent Agents, which can
create ''living'' types.

What We’ve Learned…

� Deal with tree data structures
Used to implement databases and hierarchtical
structures efficiently. Most ''real-world'' data deal
with this ADT.

� Create infinite data structures
Delayed evaluation of data (evaluated as
needed) as seen with Streams.

Isn’t it amazing what we’ve
done so far???

Next Idea: Evaluators

� So now it’s on to evaluators

� So we’ve been using: Underlying
Scheme

� Time to create new models of
evaluation…WHY?

2

New Models of Evaluation…

� One: to embody the common elements of large
groups of problems.

� Two: To solve problems differently, to think
outside of the box.

� So outside of the box we’ll be going for the next
3 weeks…

Different Evaluators

� The differences (and advantages) of lexical vs.
dynamic scope. (Scheme vs. Logo)

� A faster compiler/interpreter (Analyze)
� A normal-order Scheme evaluator (Lazy)
� A version of Scheme that solves problems non-

deterministically (Amb)
� A pattern-matcher/artificial intelligence Scheme

evaluator (Query)

So What Now?

� Well since we know SCHEME really well
RIGHT? �

� We’re going to write Scheme in Scheme.

� This is called the metacircular evaluator

MCE in all it’s glory…

� So the environment diagram showed us
the “below the line” evaluation of
scheme expressions

� This is going to come into play right
now…so let’s review THE RULES!

3

The Rules!

� Self-Evaluating - Just return their value

� Symbol - Return closest binding, if none
error.

…more stuff to follow �

More rules…
� Special forms:

Define - bind var name to evaluation of rest in current
frame

Lambda - Make a procedure, write down params, and
body - Do not evaluate

Begin - Evaluate each expression, return value of last
one

set! - find var name, eval expression and set var to the
return value

if - eval predicate and then either the true-part or false-
part.

Some more rules…

� Procedures
Primitive's - Apply by magic...

User-defined - Make a new frame, extend to
proc's frame, bind arguments to formal
parameters, evaluate the body of the procedure
in the new frame.

� Syntactic Sugar - Get rid of it (untranslate)!

What to do…

� We have all the rules to do Scheme.
� Now let’s translate it into a Scheme

evaluator.
� There’s only 2 things we do in Scheme:

�Evaluate expressions
�Apply operator to arguments in a new

environment

4

Eval (from reader)

(define (scheme)
(print '|> |)
(print (eval (read) the-global-environment))
(scheme))

(define (eval exp env)
(cond ((self-evaluating? exp) exp) ;;Rule 1

((symbol? exp) (lookup exp env)) ;;Rule 2
((special-form? exp)
(do-something-special exp env)) ;;Rule 3

(else (apply (eval (car exp) env) ;;Rule 4
(map (lambda (e) (eval e env))

(cdr exp))))))

Apply (from reader)

(define (apply op args) ;;Rule 4... Verbatim
(if (primitive? op)

(do-magic op args)
(eval (body op)

(extend-environment
(formals op)
args
(op-env op)))))

So Far…

� That’s what we had so far in class and the
reader…but what about the book???

� Chapter 4 shows you a detailed way to do
the mce

� Let’s take a further look…

Running the MCE…

So here’s what you run for the MCE:
(define (mce)

(set! the-global-environment
(setup-environment))

(driver-loop))

What’s it doing?

5

Global Environment

� So it sets up the global environment.
�At first the global environment is defined as:

(define the-global-environment '())

�But in mce it gets set! to be (setup-
environment)

� Now what’s happening there?

Environments…

� First off, what’s an environment?
�Place to store variable bindings

G
Primitives live

here

Environments…

� First off, what’s an environment?
�Place to store variable bindings
�Where procedures point to

G
Primitives live

here

Environments…

� First off, what’s an environment?
� Place to store variable bindings
� Where procedures point to
� Can be extended by a frame upon procedure invocatio ns

G
Primitives live

here

6

Setting up the environment…

(define (setup-environment)
(let ((initial-env

(extend-environment (primitive-procedure-names)
(primitive-procedure-objects)
the-empty-environment)))

(define-variable! 'true true initial-env)
(define-variable! 'false false initial-env)
(define-variable! 'import

(list 'primitive
(lambda (name)

(define-variable! Name
(list 'primitive (eval name))
the-global-environment)))

initial-env)
initial-env))

Creating a global environment in
the MCE…

� What do we first start with?
� the-empty-environment:

(define the-empty-environment '())

� So the global environment starts off as
empty list with no variable bindings.

Setting up the environment…

(define (setup-environment)
(let ((initial-env

(extend-environment (primitive-procedure-names)
(primitive-procedure-objects)
the-empty-environment)))

(define-variable! 'true true initial-env)
(define-variable! 'false false initial-env)
(define-variable! 'import

(list 'primitive
(lambda (name)

(define-variable! Name
(list 'primitive (eval name))
the-global-environment)))

initial-env)
initial-env))

Primitives…

(define primitive-procedures
(list (list 'car car)

(list 'cdr cdr)
(list 'cons cons)
(list 'null? null?)
(list '+ +)
(list '- -)
(list '* *)
(list '/ /)
(list '= =)
(list 'list list)
(list 'append append)
(list 'equal? equal?)
;; more primitives))

(define (primitive-procedure names)
(map car

primitive-procedures))

(define (primitive-procedure-objects)
(map (lambda (proc)

(list 'primitive (cadr proc)))
primitive-procedures))

(define (primitive-procedure? proc)
(tagged-list? proc 'primitive))

(define (primitive-implementation proc)
(cadr proc))

7

Extending an environment…

� How do we extend an environment?

(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))

(cons (make-frame vars vals) base-env)
(if (< (length vars) (length vals))

(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))

� Make a frame???
� Let’s do it…

Making Frames…

� Frames hold the variables and values.
� Both are lists.

(define (make-frame variables values)
(cons variables values))
Ex. ((x y z) 1 2 3)

(define (frame-variables frame) (car frame))
Ex. (frame-variables ((x y z) 1 2 3)) ���� (x y z)

(define (frame-values frame) (cdr frame))
Ex. (frame-values ((x y z) 1 2 3)) ���� (1 2 3)

(define (add-binding-to-frame! var val frame)
(set-car! frame (cons var (car frame)))
(set-cdr! frame (cons val (cdr frame))))

Setting up the environment…

So the global environment should look
something like this…
(((car cdr cons null? + …)

(primitive #[closure car])
(primitive #[closure cdr]) …))

Setting up the environment…

(define (setup-environment)
(let ((initial-env

‘(((car cdr cons null? + …) (primitive #[closure car]) …))
(define-variable! 'true true initial-env)
(define-variable! 'false false initial-env)
(define-variable! 'import

(list 'primitive
(lambda (name)

(define-variable! Name
(list 'primitive (eval name))
the-global-environment)))

initial-env)
initial-env))

8

Defining variables…

Searches in the current frame for the variable, if not it just adds it
to the frame, otherwise it changes the value of the variable.

(define (define-variable! var val env)
(let ((frame (first-frame env)))

(define (scan vars vals)
(cond ((null? vars)

(add-binding-to-frame! var val frame))
((eq? var (car vars))
(set-car! vals val))
(else (scan (cdr vars) (cdr vals)))))

(scan (frame-variables frame)
(frame-values frame))))

Global is set…

� So the global environment is set…
� We went through a lot of the environment and

frame code of the mce…what happens when we
run it?
(define (mce)

(set! the-global-environment
(setup-environment))

(driver-loop))
� It calls the driver-loop…

Read/Eval/Print Loop

� Driver loop is also called the
read/eval/print loop

� Reads in from the user…that’s why mc-
eval takes a quoted expression to evaluate
ie. (mc-eval ‘(+ 1 2))

Clarification

� Remember when I said:
“All Scheme Expressions are just LISTS”

� Here is where that comes into play
> (define x 14)
this just says that this is a list with the car
being a define

� So you could think about this as a tagged object,
so tagged-data come into the picture…

9

Tagged List..

� So here’s the general procedure for
tagged-list.
(define (tagged-list? exp tag)

(if (pair? exp)
(eq? (car exp) tag)
false))

Driver Loop…

(define (driver-loop)
(prompt-for-input input-prompt)
(let ((input (read)))

(let ((output (mc-eval input the-global-
environment)))

(announce-output output-prompt)
(user-print output)))

(driver-loop))

So Eval in MCEVAL.scm

� So in the beginning of discussion, we had
a simpler version on eval…

� Let’s take a look at the bigger version…

Eval
(define (mc-eval exp env)

(cond ((self-evaluating? exp) exp)
((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)

(lambda-body exp)
env))

((begin? exp)
(eval-sequence (begin-actions exp) env))
((cond? exp) (mc-eval (cond->if exp) env))
((application? exp)
(mc-apply (mc-eval (operator exp) env)

(list-of-values (operands exp) env)))
(else (error "Unknown expression type -- EVAL" exp))))

10

Interesting…

� Did you see what all the cond clauses have in common?

(cond (…
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)

(lambda-body exp)
env))

((begin? exp)
(eval-sequence (begin-actions exp) env))
((cond? exp) (mc-eval (cond->if exp) env)) ...)

Special Forms…

� They’re all special forms!
� Now you can create a special form!
� Like we said before, special forms don’t

follow the regular rules of evaluation, so
they have their own clauses…

Apply

(define (mc-apply procedure arguments)
(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))
((compound-procedure? procedure)
(eval-sequence

(procedure-body procedure)
(extend-environment

(procedure-parameters procedure)
arguments
(procedure-environment procedure))))

(else (error "Unknown procedure type -- APPLY" procedure))))

Cond Explicitly…

� Cy D. Fect doesn't like the way that cond clauses are
evaluated in the MCE. He thinks its a waste of time to
convert the cond statement into nested if statements
before evaluating them. Cy would prefer that the
evaluator directly handle the structure of the a cond
statement.

� Your task is to define a function eval-cond that
evaluates a cond expression within a given environment
without making any new MCE if expressions.
;;inside eval's big cond statement ...
((cond? exp) (eval-cond exp env)) ...

(define (eval-cond exp env)
;;Your code goes here (helper functions may help...)

11

Cond…

(define (cond? exp)
(tagged-list? exp 'cond))

(define (cond-clauses exp) (cdr exp))

(define (cond-else-clause? clause)
(eq? (cond-predicate clause)

'else))

(define (cond-predicate clause)
(car clause))

(define (cond-actions clause)
(cdr clause))

(define (cond->if exp)
(expand-clauses (cond-clauses
exp)))

(define (expand-clauses clauses)
(if (null? clauses)

'false ; no else clause
(let ((first (car clauses))

(rest (cdr clauses)))
(if (cond-else-clause? first)

(if (null? rest)
(sequence->exp (cond-actions first))
(error "ELSE clause isn't last

-- COND->IF“ clauses))
(make-if (cond-predicate first)

(sequence->exp
(cond-actions first))

(expand-clauses rest))))))

Solution…

� (define (EVAL-COND exp ENV)
(define (expand-clauses clauses)

(if (null? clauses)
'false

(let ((first (car clauses))
(rest (cdr clauses)))

(if (cond-else-clause? first)
(EVAL (sequence->exp (cond-actions first)) ENV)
(IF (TRUE? (EVAL (cond-predicate first) ENV))

(EVAL (sequence->exp (cond-actions first))
ENV)

(expand-clauses rest))))))
(expand-clauses (cond-clauses exp)))

Lexical vs. Dynamic Scope

� One note on lexical vs dynamic scoping.
Scoping refers to where we "point" our
procedure calls. In lexical scoping, we point the
frame to where the procedure we call points to,
you should recognize this from Scheme. In
dynamic scoping, you point your frame back to
the last frame you were in. See the official
lecture notes for implications.

