
1

Streams…

…row, row, row your boat…

Agenda

� SUPER Brief intro to streams…
� Midterm Review
� Next Time…more streams & Scheme

written in Scheme! (MCE)

Brief Intro to Streams

� Creates a sequence, but computes it only
when requested!

� So the answer is outputted when program
needs it, not when the program is called

� Promise!

Stream ADT

� Constructors
�cons-stream

(cons-stream 1 2) � (cons 1 (delay 2))

� Selectors
�stream-car

(stream-car (cons-stream 1 2)) � 1
�stream-cdr

(stream-cdr (cons-stream 1 2)) � 2

2

Stream Procedures…
� stream-map

� Works similarly like map for lists, but with streams
� Ex.

(ss (stream-map + ones integers))
� (2 3 4 5 6 7 8 …)
;; it adds the first element of each stream together, then adds the second element of
both streams together etc. …
(1+1 1+2 1+3 etc.)

� stream-append
� Works similarly to append, but it only works on finite streams where the last

element is the-empty-stream
� Ex.

(ss (stream-append (cons-stream 1 the-empty-stream) (cons-stream 2 the-empty-
stream)))

� Interleave
� It takes two streams and interchanges their values and produces a new stream

� Ex.
(ss (interleave ones twos))
� (1 2 1 2 1 2 1 2 …)

� stream-null?
� The-empty-stream indicates whether a stream is null.

Null streams?

� Is there a null value for a stream?
YES! It’s called the-empty-stream

� Below the line…
� (define (cons-stream a b)

(cons a (delay b)))
� (define (stream-car stream)

(car stream))
� (define (stream-cdr stream)

(force (cdr stream)))

Implicit Streams…

� Implicit streams
Not using any other streams…ie
(define ones (cons-stream 1 ones))

� NOT implicit
(define integers

(cons-stream 1
(stream-map + ones integers)))

What’s the point?

� Benefit of efficiency…no long wait for an
answer…

� Deferred operations until necessary.
�Think about being lazy and doing something

only when you need to �

3

Stream Practice

� Create a stream repeater that takes an
expression and generates this kind of
stream:
(ss (repeater ‘ha)) � (ha haha hahaha …)

� Create a binary stream:
(0 1 10 11 100 101 110 111 1000…)

More next time!

…time for midterm review…

