
1

Lexical vs. Dynamic
Scope

…where do I point to?

Intro…

� Remember in Scheme whenever we call a
procedure we pop a frame and point it to
where the procedure points to (its defining
environment).

� This is called lexical scoping.

Intro…

� So what’s the difference between lexical
and dynamic?

� In dynamic scope, when calling a
procedure, the current environment is
NOT extended where the procedure points
to.

Example.

� (define pie ‘pie)
� (define (pie-maker pie)

(word pie n))
� (define (yum n)

(word (pie-maker n) pie))
� (yum ‘apple)

2

Practice…revisited.

� (define x 10)
� (define (foo y)

(let ((x 20)
(f (lambda (z) (y))))

(f 14)))
� (foo (lambda () x))

What is the result using lexical scope?
How about dynamic scope?

L…A...Z…Y

…i thunk

So Far…

� We saw the MCE and all its glory…

� So how about changing the MCE so that
we defer operations.
�Create a normal order evaluation interpreter.
�How to do that?

Modify…

� So let’s modify the MCE so that we defer
evaluation of procedures until we need the
value
�This is only needed for compound procedures

and not primitives (this will be later explained)

� Need to modify procedure calls
�Delay arguments (“thunk”)

3

Delays…

� What should you delay???
�Arguments to procedures.
�THAT’S IT!

Thunking…

� Let’s take this expression
(((lambda (x y) x) + -) 3 4)

� So we would thunk 3 & 4 and evaluate the the
operator

((lambda (x y) x) + -)
� We then thunk everything again and eval the

lambda
#[closure args=(x, y) …]

� Then we pass in the thunked ‘+’ and ‘-’
and we replace x with the thunked ‘+’

Thunks…

(+ 3 4)
� To evaluate a thunk is to force the

argument.
� Since the operator is a primitive we force

the operator and force all of it’s arguments
� So we get the return value of 7.
� More explanations to come!

Force…

� What should be forced???
�Arguments to primitives

� ie (+ 3 4) � 3 and 4 are forced.

�Operators in procedure calls
� ie ((lambda (x) x) (foo x)) � lambda is forced.

�Value to be printed by the driver loop
�Parts of special forms

� ie. Predicate of an if-statement

4

How do we change the evaluator?

� So what’s the plan?
�Change it so that we defer evaluation of the

arguments

�Modify the apply so that we call primitives and
delay compound procedures

� Implement the “thunk”

Changing EVAL…

(define (eval exp env)
(cond …

((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))
…))

Remember… list of values recursively calls eval for
each of the arguments, so instead let’s create it
so it delays all of the arguments!

Changing EVAL…

(define (eval exp env)
(cond …

((application? exp)
(apply (actual-value (operator exp) env)

(operands exp) env))
…))

Here instead of doing eval on the operator, we use
actual-value. This procedure forces a promise
because eval may return a promise or an actual
value.

Changing APPLY…(primitive)

(define (apply proc args)
(cond ((primitive-procedure? proc)

(apply-primitive-procedure
proc args))

…))
So we said that for primitives we force all

the arguments to the primitive so…

5

Changing APPLY…(primitive)

(define (apply proc args env)
(cond ((primitive-procedure? proc)

(apply-primitive-procedure
proc (list-of-arg-values args env)

…))

So we call list-of-arg-values which forces all
of the arguments to the primitive.

List-of-arg-values

(define (list-of-arg-values exps env)
(if (no-operands? exps)

‘()
(cons (actual-value (first-operands exps) env)

(list-of-arg-values
(rest-of-operands exps) env))))

So this forces each argument by calling actual-
value on each of the arguments and returns a
list of values.

Changing APPLY…(compound)

(define (apply proc args)
(cond …

((compound-procedure? proc)
(eval-sequence
…
(extend-environment

(procedure-parameters proc)
(list-of-delayed-args arguments env)
(procedure-environment proc))))

…))

The list-of-delayed-args will use eval to get the value of
each argument but this time will use delay and make a
list of thunks

List-of-delayed-values

� So list-of-delayed-args looks similar to list-of-
values, but instead of just evaluating each
argument. We delay each of the arguments

(define (list-of-delayed-args exps env)
(if (no-operands? exps)

‘()
(cons (delay-it (first-operand exps) env)

(list-of-delayed-args exps env))))

6

Creating delay and force…

� We can’t just use the underlying Scheme’s
delay . This wouldn’t make a thunk that
we could use in the MCE.

� Let’s create a delay and force.

Thunks…
� What’s a thunk?

� It’s basically an expression we evaluate later in a certain
environment

� So…
(define (delay-it exp env)

(list ‘thunk exp env))

(define (thunk? obj)
(tagged-list? obj ‘thunk))

(define (thunk-exp thunk) (cadr thunk))

(define (thunk-env thunk) (caddr thunk))

in mc-eval…
((thunk? exp) exp)

Evaluating thunks…

� Thunks can only return a value when
forced.

� Actual-value:
(define (actual-value exp env)

(force-it (eval exp env)))
� Force-it will evaluate the thunk until a

value is reached.

Force-it…

(define (force-it exp obj)
(cond ((thunk? obj)

(let ((result (actual-value (thunk-exp obj)
(thunk-env obj))))

(set-car! obj ‘evaluated-thunk)
(set-car! (cdr obj) result)
(set-cdr! (cdr obj) ‘())
result))

((evaluated-thunk? obj)
(thunk-value obj)

(else obj)))

So what’s evaluated-thunk???

7

Memoizing…

� Once a thunk is evaluated, it’s no longer a
thunk and thus it’s been evaluated…
(define (evaluated-thunk? obj)

(tagged-list? obj ‘evaluated-thunk))

(define (thunk-value evaluated-thunk)
(cadr evaluated-thunk))

Use Environment Diagrams!!!

� New Rules for Evaluation…
� If the car’s not a special form, then force the

car and delay all the arguments

�Bind the variables to the arguments)

�Evaluate the body
� If an expression evaluates to a thunk, don’t

evaluated it! Just return the thunk, unless it’s
being printed by the read/eval/print loop

� Let’s practice!

Let’s give it a go…

� (define count 0)
� (define (add x y)

(set! count (+ count 1))
(+ x y))

� (define w (add 3 (add 4 5)))
� count � ???
� w � ???
� count � ???

Things to know…

� What changes to the MCE you need to do
to implement lazy evaluation

� Practice doing lazy evaluation by
environment diagrams

� Make sure you know the MCE!!!
� Chapter 4 is your friend!
� Don’t understand? Come and talk with

me.

8

More Lazy…

…yes again…

Lazy Terminology

� Normal Order vs. Applicative Order
� refers to order of evaluation of arguments
�Applicative Order: Scheme

�Normal Order: lazy evaluation

� strict vs. non-strict
� refers to procedures and arguments
�strict: evaluate arguments before entering

body of procedure (scheme procedures)

�non-strict: evaluate arguments later

More Lazy Terminology

� call-by-value, call-by-name (thunks), call-
by-need (memoized thunks):
�call-by-value: pass in values of arguments

�call-by-name: values are “thunkified”, and
passed in as thunks

�call-by-need: thunks are memoized (or mini-
memo for those that don’t believe that it’s
memoized) so that the value isn’t computed
again.

Review Lazy…

� Delay
�Only arguments to compound procedure calls

� Force
�Arguments to primitive procedure calls
�Operators to procedure calls (because what

would you apply to the thunked arguments?)
�The IF predicate
�Values to the print loop

9

Lazy Below the Line
� Things to change

� MC-EVAL – application? Clause
((application? exp)

(apply (actual-value (operator exp) env)
(operands exp) env))

� MC-APPLY
((primitive-procedure? proc)

(apply-primitive-procedure
proc (list-of-arg-values args env))

((compound-procedure? proc)
(eval-sequence
…
(extend-environment

(procedure-parameters proc)
(list-of-delayed-args arguments env)
(procedure-environment proc))))

Lazy Environment Diagrams…
� The only change in evaluation…

� When it’s a procedure call, evaluate first argument
(force the operator)

� Then thunkify the arguments by drawing pills. Where
the left side points to the argument being thunked and
the right points to where the thunk is being evaluated.

� Then do the normal popping of frame, binding the
arguments to the thunks you created, and then
evaluating the body of the function you’re calling.

� Evaluating thunks:
� If memoizing thunks, you point the variable to the return

value of the thunk
� If unmemoized, you just force the thunk but leave the

variable pointing to the thunk as is.

Draw the environment diagram…

� (define w 100)
� (define (foo x y) (x y))
� (define q (foo (lambda (z) (set! w 50) z)

(begin (set! w 10) 3))))
� w � ???
� q � ???
� w � ???

Draw the environment diagram
solutions…

� (define w 100)
� (define (foo x y) (x y))
� (define q (foo (lambda (z) (set! w 50) z)

(begin (set! w 10) 3))))
� w � 50
� q � 3
� w � 10

10

Next Time:
Amb Eval

…nondeterministic
programming…the fun never
stops.

