
1

Picking and 
Choosing…

…Amb Above the Line

Intro to Nondeterminism

� So before we programmed to compute an 
answer to a problem.

� What if we set up a system where we give a 
program certain constraints?

� We then give that program a “solution space” 
and it does all the work for us. In a sense it finds 
all the solutions to the problem!

Intro to Nondeterminism

� This is Nondeterministic Programming
� There can be more than one solution to a 

problem
� So how can we do this by altering the 

MCE?
� We introduce the new procedures amb, 

require, & try-again

How does this work?

� Structure:
� Specify solution space:

Ex. (amb 1 2 3)
� Specify contraints:

Ex. (require (< n 10))
� Do something with the solution that satisfy the 

constraints.
Ex. (define (even? x) (= (remainder x 2) 0)) 

(let ((a (amb 1 2 3 4 5))) 
(require (even? a)) 
a)

� Find another answer: try-again



2

What is AMB?

� Amb is a special form.
�Why?  Because it doesn’t evaluate all of its 

arguments (doesn’t follow the rules of 
evaluation)

� It returns a single value or fails if there are no 
more values

What happens…

� What happens when a solution doesn’t 
satisfy the requirements or there are no 
more values left?

FAILURE!!!
� A failure is not the same as an error! It just 

means we need to go back and try another 
solution

Back to Amb

� Amb sequentially chooses its values from 
left to right.

� So you type:
(amb 1 2 3) � 1
try-again � 2
try-again � 3
try-again � no more values

� (amb) � always fails

What do these print?

After multiple try-agains what would 
happen?

� (amb 1 2 3)
� (amb (list 1 2 3)) 
� (amb 1 (amb 2 (amb 3))) 
� (amb (amb 1) (amb 2) (amb 3)) 
� (amb (amb 2 3) 1 (amb 4)) 



3

Try-Again

� try-again finds another solution to the 
“current problem”

� What happens if we start a new problem 
before the current one isn’t finished?
� try-again is now going to work with the new 

problem

� Try-again should be only used at the 
command prompt

Require

� Require lets you put constraints on your 
solution.

� Implementation:
(define (require p) 

(if (not p) (amb)))
� If we don’t satisfy a requirement, we fail by 

calling (amb)

Practice!

What does this return after multiple 
try-agains?

� (let ((a (amb 1 2 3))
(b (amb -1 4 3)))

(require (< a b))
(list a b))

More Practice…

� (define (foo x)
(cond ((not (pair? x)) (amb))

((word? (cdr x)) (cdr x))
(else (amb (foo (car x))

(foo (cdr x))))))
� (foo ‘(a (b c) (d e . f) (g (h . i) j) k))

__________
� try-again

__________
� try-again

__________



4

More Practice…

� (define (foo x)
(cond ((not (pair? x)) (amb))

((word? (cdr x)) (cdr x))
(else (amb (foo (car x))

(foo (cdr x))))))
� (foo ‘(a (b c) (d e . f) (g (h . i) j) k))

f
� try-again

i
� try-again

no more values

Amb Below the Line

…the fun just never ends…

Intro to Amb Below…

� So we know that amb chooses its values 
from left to right, and if it doesn’t have any 
choices left, it magically goes back and 
returns you no more values.

� So what the heck is actually happening?

Continuations: Success and Failure

� Continuations are a successful computation and 
a promise to compute in that environment until a 
failure is reached.

� When a failure is reached, a “roll-back” 
mechanism happens where it goes back to the 
preceding environment and continues from 
there.

� So a failure basically tries to find a new value.
� Yes it’s confusing, but slowly understand…



5

Let’s take a look…

(define (ambeval exp env succeed fail)
(cond ((self-evaluating? exp) 

(succeed exp fail))
((variable? exp)
(succeed (lookup-variable-value exp env) 

fail))
((quoted? exp) 
(succeed (text-of-quotation exp) fail))

…))

What is succeed?

� Succeed is a procedure that takes two 
arguments, a value and a failure 
procedure.
(succeed exp fail)

� In the driver-loop you can see that the 
success procedure passed will take a 
value and print it and call the failure if try-
again is typed in as input.

What is fail?

� Well fail, as I said before, means to go and 
find a another value until it COMPLETELY 
fails which will go back to the driver-loop 
and you need to start a new problem.

� So you can think of amb as not having to 
always go back to the calling procedure.  
The driver-loop won’t be called again until 
the problem you’re working has failed.

Simple example…

� So what happens when I type:
> 3
What is the success proc? How about fail?

What does this return? 

And what happens when I type try-again?



6

Example…

� So ambeval will get passed 3 as its 
expression

� The success procedure that does a print 
and a call to internal-loop with next-
alternative.  

� The failure is a procedure with no 
arguments that basically calls the driver-
loop again.

Example…

� (ambeval ‘3 
(lambda (val next) 
(print val) 
(internal-loop next)) 

(lambda () 
(display ‘no-more-values) 
(newline) 
(driver-loop)))

� So it’ll go into the self-evaluating clause and do (succeed 
exp fail)

� What will this do?

More example…

� So what happens when you do amb?
(define (eval-amb exp env succeed fail)

(define (try-next choices)
(if (null? choices)

(fail)
(ambeval (car choices)

env
succeed
(lambda ()

(try-next (cdr choices))))))
(try-next (amb-choices exp))) ;; strips off ‘amb’ tag

� So let’s trace this: (amb 3 4)

Next Time: Query

…pattern matching…


