Week 4 - 04-02-12
Midterm 1 Review

Scheme Questions

What will Scheme print in response to the following expressions? If an expression
produces an error or runs forever without producing a result, just say “error”; If
the value of an expression is a procedure, just say “procedure.”

(word *(+ 2 3) (+ 2 3)) ERROR
((lambda (x y z) (* 5y)) 34 7) 20
((if 3-%*)232) 21
(lambda (x) (/ x 0)) procedure
(butfirst ‘(help)) 0
(let ((+ -)) 6
(+ 8 2))
(every - (filter number? ‘(the 1 after 909))) (-1 -909)
(let ((a 2) (b (+ a 3))) ERROR
(word a b))
((lambda (abc) (bca))l+4) 5
(se (‘tell ‘me ‘why)) ERROR

(every pigl (se () (word 61 ‘a) (se'is ‘a) ‘great ‘(class)))
(a6lay isay aay eatgray assclay)

(let ((a (square 2))
(b (+34)))
(let ((c (+ a (let ((d 3))
(+ b d))))
(e 14))

(* (+ab)(-eq))))

((lambda (a b)
((lambda (c e)
(*(+ab)(-ec)))
(+a((lambda (d) (+ bd)) 3)
14)
(square 2)
(+34))

Higher Order Function
Write a procedure called make-manip which takes two procedures, pred and
manip and returns a manipulator! A manipulator is a procedure that takes a
sentence as its argument and returns a sentence in which every element from
which pred returns true is manipulated with manip, and all of the other elements
are the same. For example:

>((make-manip odd? 1+) (3 6 9 12))
(4610 12)

No Helper functions!

Write one version using HOF and no explicit recursion.

(define (make-manip pred funct)
(lambda (x)

(every (lambda (y) (if (pred y) (functy) y)) x)))

Write another using no HOF.

(define (make-manip pred funct)
(lambda (x)
(cond ((empty? x) '()
((pred (first x))
(se (funct (first x)) ((make-manip pred funct) (bf x))))
(else (se (first x) ((make-manip pred funct) (bfx))))))))

Normal vs. Applicative Order
True or False:

(define (f x) (* x x x))

Evaluating (f (g y)) evaluates (g y) more often in applicative order than in normal
order.

FALSE

Suppose you were given the following definitions:
(define (double x) (+ x x))

(define (foo xy z) (+ xvy 2z)

(define (bar x y z k) k)

How many times is + called for
(foo (double (+ 1 1)) (double (+ 1 1)) (+ 1 1))

...under normal order? 8

...under applicative order? 6

How many times is + called for
(bar (double (+ 1 1)) (double (+ 11)) (+11)1)

...under normal order? 0

...under applicative order? 5

Big O

True or False:

If foo is Theta(n) and bar is Theta(n?), then you can always compute (foo 1000)
faster than (bar 1000) on the same computer.

TRUE

Given These Definitions:
(define (f x)

(if (< x 0)
1
(f (- x3))))

(define (g y)
(if (< y 104)
0

* (Fy) (F(-y4)))

(define (h z)
(if (< z 4)
0
(+ (h (-z2))
(h (-z1)))))

State whether or not these statements are true or false:

FALSE h generates an iterative process (i.e. uses ©(1) space)
TRUE f is O(x).

FALSE his ©(z2)

TRUE f and g have the same order of growth

FALSE g and h have the same order of growth

Project Questions
Write a strategy four-cards that hits only if a player has fewer than four cards

(define (four-cards customer-hand-so-far dealer-up-card)
(< (count customer-hand-so-far) 4))

Write a procedure n-cards that takes an argument n and returns a strategy that
hits only if a player has fewer than n cards

(define (n-cards n)
(lambda (customer-hand-so-far dealer-up-card)
(< (count customer-hand-so-far) n)))

Recursive vs. Iterative
Write a procedure (insert value insert-before sent) that’ll return a sentence
with ‘value’ inserted in the list (counting from 1):

(insert'a3'%(1234)>(12a34)
(insert x'‘a'(abcd)) > (xabcd)
(inserta'4'(1234)>(123a4)

You can assume that insert-before will always be in the sentence. You may not
use any mutators (if you know of them)

Write a version using a recursive process....

(define (insert val insert-before sent)
(if (equal? insert-before (first sent))
(se val sent)
(se (first sent)
(insert val insert-before (bf sent)))))

and another with an iterative process.

(define (insert val insert-before sent)
(define (helper sent-so-far sent)
(if (equal? insert-before (first sent))
(se sent-so-far (first val sent))
(helper (se sent-so-far (first sent))

(bf sent))))
(helper '() sent))

OR

(define (insert val insert-before sent)
(define (helper sent-so-far sent)
(cond ((empty? sent) sent-so-far)
((equal? insert-before (first sent))
(helper (se sent-so-far (se val sent))

'‘0))

(else (helper (se sent-so-far (first sent))

(bf sent)))))
(helper '() sent))

Programming Methodology
Greg wanted to write a procedure that would split a non-empty word into a
sentence of consecutive, identical letters as follows:

(split *(aaabbcdddaa) > (aaa bb c ddd aa)
(split ‘abababab) > (abababab)
(split‘aaa) »> (aaa)

(splitta) - (a)

Here’s what he wrote:

: (define (split wd)
(split-help (first wd) (bf wd)))

: (define (split-help cur wd)
(cond ((empty? wd) (se))
((equal? cur (first wd))
(split-help (word cur (first wd)) (bf wd)))
(else
(se cur (split-help (first wd) (bf wd))))))

OCoONOOTUPL~,WNH

There are two bugs.

Part A:

What does (split ‘abc) return? (a b)

On which line number is the bug that causes this error? Line 5
What should the line say?

(cond ((empty? wd) (se cur)) ...

Part B:

Where’s the other bug? Line 6
What should the line say?

((equal? (first cur) (first wd)) ...

