
1

Data Abstraction…

The truth comes out…

What we’re doing today…

� Abstraction
� ADT: Dotted Pair
� ADT: List
� Box and Pointer
� List Recursion
� Deep List Recursion

Administrivia!

� Midterm 1 will be graded by Saturday.
Expect seeing a grade some time this
weekend.

� Project 1 grades should be coming in
soon. Just hold onto your horses =)

Abstraction

� The BIGGEST idea of this course
� Ability to hide the lower levels of detail
� Example:

�Driving a car but not knowing how it really
runs

�Using sentences and words, but not knowing
exactly how it’s implemented….until now.

2

Abstract Data Type (ADT) is…

� the logical data structure itself (an
abstraction, not the detailed
implementation), combined with…

� a set of operations which work on the data
structure.

� When we use ADTs, we don’t care how
they’re implemented, just how to use
them.

ADT: The Dotted Pair

� What is a Pair?

�Most basic data structure

�Puts two things together

ADT: The Dotted Pair

� Constructor:
� Cons: (cons <value1> <value2>)

� Example:
� (cons 1 2) => (1 . 2)

ADT: The Dotted Pair

� Selectors:
� Car: (car <cons-cell>)

� Examples:
� (car (cons 1 2)) => 1

� Cdr: (cdr <cons-cell>)
� Examples:

� (cdr (cons 1 2)) => 2

3

ADT: Lists 1/7

� What are Lists?
�An ordered set of elements enclosed in ‘()’
�Built on cons cells, so it’s a pair whose ‘cdr’ is

the empty list
� (list <value1> ... <valuen>) =>

(cons <value1> … (cons <valuen> nil))

ADT: List 2/7

� Difference between lists and sentences?
� A sentence can contain only words and sentences
� A list can contain anything:

� Booleans
� Procedures
� Other lists

� Sentences can be thought of as a “flat” list.
� They both have their own set of constructors and

selectors.

ADT: Lists 3/7
� More Constructors & Examples:

� Cons
� Examples:

� (cons ‘a ‘b) => (a . b)
� (cons (cons a ‘()) (cons b (cons c ‘()))) => ((a) b c)

� List
� Examples:

� (list ‘a ‘b) => (a b)
� (list (cons a (list b) (list c)) => ((a b) (c))

� Append: *always* takes in lists.
� Examples:

� (append (list a b) (list c d)) => (a b c d)
� (append (list (list a b)) (list c d)) => ((a b) c d)

ADT: Lists 4/7
� Higher Order Functions

� Map (like every)
� Usage: (map <unary function> <list>)
� Example:

� (map (lambda (x) (list x)) ‘(1 2 3 4))
=> ((1) (2) (3) (4))

� Filter (like keep)
� Usage (filter <pred?> <list>)

� (filter list? ‘(a (b c) () ((d)))
=> ((b c) () ((d)))

� Reduce (like accumulate)
� Usage (reduce <binary function> <list>)

� (reduce (lambda (x y) (if (> (length x) (length y)) x y)) ‘(a (b c d) () ((e)))
=> (b c d)

4

ADT: Lists 5/7

� More Primitives for Lists!
� length: returns the number of elements in a list (like

count)
� Usage: (length <list>)

� null?: returns #t if it’s an empty list otherwise #f (like
empty?)

� Usage: (null? <list>)

� list?: returns #t if argument is a list, #f otherwise
� Usage: (list? <list>)

ADT: Lists 6/7

� list-ref: returns the element at that position where the
first element is the 0th position. (like item)

� Usage: (list-ref <position> <list>)

� equal?: works the same way as with sentences.
� Usage: (equal? <list>)

� member: returns the part of the list starting with the
element, otherwise #f

� Usage: (member <element> <list>)

ADT: Lists 7/7

� Use them correctly!
�Examples:

� (se (list ‘this ‘is ‘bad) (list 1 2 3))
� (first (list ‘this ‘is ‘a ‘list))
� (car (se ‘this ‘is ‘(a sentence)))

� Yes they may produce the correct results
but it’s a…

DAV!

� Data Abstraction Violation
� You’ll probably only hear this in 61a, but…
� We will DING you guys on this on…

�Homework

�Projects, and especially
�Exams!

5

ADTs

� Whenever creating a new ADT make sure:
� You have constructors to create that data type
� You have selectors for that data type

� Example:
� Create a new data type car which takes a driver,

navigator, and a passenger
� Create appropriate constructors and selectors for this

data type.
� Create a procedure run-around which returns a new

car with the driver as the old car’s navigator, the
navigator as the passenger, and the passenger as the
driver.

Box and Pointers 1/5

� Back to Pairs
� (cons ‘man ‘woman) ;; a pair

� cons simply makes pairs

� One Element List
� (cons ‘alone ‘()) ;; a list

� cons to null at the end makes list

‘man ‘woman

‘alone

Box and Pointers 2/5

� Tips on how to do box and pointer diagrams.
� See how many elements are in the list. This is the

“backbone” of the box and pointer diagram.
� Whenever you see cons…draw a box.
� If you can write out the whole ‘cons’ representation of

the list. This will show you how many boxes you’ll be
drawing.

� Draw a starting arrow to the first box.
� Just take it by ‘car’ and ‘cdr’ and you’ll be fine! �
� Whenever you see a dotted pair, it means that it’s not

a list, so it shouldn’t end with a null box.

Box and Pointers 3/5

� A Longer List
� (cons ‘neo (cons ‘trinity (cons ‘morpheus ‘())))

� Equivalent to (list ‘neo ‘trinity ‘morpheus)

� Whenever you see the list procedure, go
ahead and build a ‘backbone’

‘neo ‘trinity ‘morpheus

6

Box and Pointers 4/5

� A Nested List
� (cons (list ‘greg ‘carolen ‘alex) (list ‘kurt

‘brian))

� ‘((greg carolen alex) kurt brian)

‘kurt ‘brian

‘greg ‘carolen ‘alex

Box and Pointers 5/5

� Just to make sure you didn’t forget about
pairs…

� What scheme expression to construct...

‘architect ‘oracle ‘ghost ‘keymaker

Chasing cars… and cdrs? 1/3

� car means follow the first arrow
� cdr means follow the second arrow

‘man ‘woman

Chasing cars… and cdrs? 2/3

� (define x ‘((greg carolen alex) kurt brian))
� (car (cdr (car x))) ;; what is this?

‘kurt ‘brian

‘greg ‘carolen ‘alex

x

7

Chasing cars… and cdrs? 3/3

� (define x ‘((greg carolen alex) kurt brian))
� (car (cdr (car x))) ;; what is this?

‘kurt ‘brian

‘greg ‘carolen ‘alex

x

List, List, List…(List recursion!)

� List recursion is the same as sentence recursion, but using the list
constructors and selectors.
� Example:

(define (foo lst)
(if (null? lst)

nil
(cons (car lst)

(foo (cdr lst)))))
(define (foo2 lst)

(if (null? lst)
nil
(append (list (car lst))

(foo (cdr lst)))))
� Reversing a list is a little bit different than with sentences.

This was in lab.
� Once you get enough practice with list recursion, it’ll become second

nature.

Deep List Recursion 1/3

� This is really simple.
� Just do normal recursion, and stick in another base case that asks if

the argument is a list.
� Example:

� (define (square-list L)
(if (null? L)

nil
(cons (square (car L)) (square-list (cdr L)))))

� (define (square-deep-list L)
(cond ((null? L) nil)

((list? (car L)) (cons (square-deep-list (car L))
(square-deep-list (cdr L))))

(else (cons (square (car L))
(square-deep-list (cdr L))))))

Deep Recursion 2/3

� Write a function ‘rev’ that reverses a list
� (rev ‘(1 2 (3 4))) => ((3 4) 2 1)

� Now make it so that it does a deep reverse
� (deep-rev ‘(1 2 (3 4))) => ((4 3) 2 1)

8

Deep Recursion 3/3

� Answer
� (define (rev l)

(if (null? l)
‘()
(append (rev (cdr l)) (list (car l)))))

� (define (deep-rev l)
(cond ((null? l) '())

((list? (car l)) (append (deep-rev (cdr l))
(list (deep-rev (car l)))))

(else (append (deep-rev (cdr l))
(list (car l))))))

More Problems…
� Box and Pointer Practice! (Write what

each evaluates to and the box and pointer
for each expression)
� (cons (list 4 5) 6)
� (append (cons 4 ‘()) (list 9))
� (list 4 (list 5) (list 6))

� Write the cons representation of this list
and the box and pointer:
� (2 ((3) 4) ((5 . 6)) 7 . 8)

More Practice Answers! 1/2

� (cons (list 4 5) 6) � ((4 5) . 6)

� (append (cons 4 ‘()) (list 9)) � (4 9)

6

4 5

4 9

More Practice Answers 2/2

� (list 4 (list 5) (list 6)) � (4 (5) (6))

� (2 ((3) 4) ((5 . 6)) 7 . 8)
� (cons 2 (cons (cons (cons 3 nil) (cons 4 nil))

(cons (cons (cons 5 6) nil) (cons 7 8))))

5

4

6

2

3

4

5 6

87

9

Have a Great
Weekend! Relax
you’ve earned it!

...full of scheme fun �

