
1

Quiz: Box and Pointer fun!

� (cons (cons (cons ‘hey
(cons ‘there nil))

nil)
(cons ‘wow nil))

� (list ‘boo (append (list ‘hoo ‘hoo)
(cons ‘see ‘me)))

What we’re doing today…

� Flat vs. Deep List Recursion
� Trees…what they are…and WHY I don’t

like them…
� Tree Recursion
� Intro to DDP

Flat vs. Deep
Recursion…

…ooh…that reaches all
levels…

Flat vs. Deep Recursion

� Think about counting the elements in a list: ((a) ((b) c) d)

a

b

d

c

2

Flat vs. Deep Recursion

� How many elements are there in flat recursion?

a

b

d

c

Flat vs. Deep Recursion

� How many elements in deep recursion?

a

b

d

c

Flat vs. Deep Recursion

� So think about flat recursion as the top
level of the list….so just go through the
backbone of a box and pointer diagram.

� Deep recursion goes through EVERY level
of the list.

Flat vs. Deep Recursion

� Last Discussion…
� (define (deep-square L)

(cond ((null? L) nil)
((list? (car L)) (cons (deep-square (car L))

(deep-square (cdr L))))
(else (cons (square (car L))

(deep-square (cdr L))))))

� You thought that was easy?...let’s shorten it
even more!

3

Flat vs. Deep Recursion

� Using pair? or list?
� (define (deep-square L)

(cond ((null? L) ‘())
((not (pair? L)) (square L))
(else (cons (deep-square (car L))

(deep-square (cdr L))))))

� Wasn’t that easier?

Flat vs. Deep Recursion

� Templates!
�Flat Recursion

(define (flat L)

(if (null? L)
<return value at the end of the list>

<combine first & recurse on ‘cdr’ list>))

Flat vs. Deep Recursion

�Deep Recursion

(define (deep L)

(cond ((null? L) <return value when end>)
((not (pair? L)) <do something to

element>)

(else <combine recursive call to ‘car’
list & recursive call to ‘cdr’
list>)))

Deep Recursion Practice

� Write deep-accumulate.
� (deep-accumulate + 0 ‘(1 (2 3) 4))
� 10

It should work like the 3 argument accumulate
but on deep lists. No HOFs

4

Deep Recursion Practice Answers

� (define (deep-accumulate op init L)

(cond ((null? L) init)

((not (pair? L)) L)
(else

(op (deep-accumulate op init (car L))

(deep-accumulate op init (cdr L)))))

Deep Recursion using HOFs

� It’s AS easy as normal recursion.

� Let’s take a closer look at what MAP does:
� (map f (list x y z))

�((f x) (f y) (f z))

� What if x, y and z were lists?

Deep Recursion using HOFs

� Map DOESN’T care!
� (map f (list '(x y z) '(a b c) '(d e f)))
� ((f '(x y z)) (f '(a b c)) (f '(d e f)))

� Map just applies the function to all the car's of a
list.

� So the question is, how can we use map on
deep lists?

Deep Recursion using HOFs

� Well, look at the structure of deep-square.
� (define (deep-square L)

(cond ((null? L) ‘())
((not (pair? L)) (square L))
(else (cons (deep-square (car L))

(deep-square (cdr L))))))

� Here is a new version using map:
(define (deep-square-map L) ;;assume L is a list

(map (lambda (sublist) (cond ((null? sublist) sublist)
((not (pair? sublist)) (square sublist))
(else (deep-square-map sublist))))

L))

5

Deep Recursion Practice w/ HOF

� Write deep-appearances
� (deep-appearances ‘a ‘(a (b c ((a))) d))
� 2

First version without HOFs.
Second version with HOFs.

Deep Recursion Answer

� (define (deep-appearances x struct)
(cond ((null? struct) 0)

((not (pair? struct))
(if (equal? x struct) 1 0))

(else (+ (deep-appearances x (car struct))
(deep-appearances x (cdr struct))))))

� Which condition isn’t needed in this case?

Deep Recursion w/ HOF Answer

� (define (deep-appearances x struct)
(accumulate + 0

(map (lambda (sublist)
(if (not (pair? sublist))

(if (equal? x sublist) 1 0)
(deep-appearances x sublist)))

struct)))

Hierarchical Data…

…trees…my nemesis…

6

Hierarchical Data

� Examples:
�Animal Classification: Kingdom, Phylum…
�Government: President, VP…etc.

�CS Staff: Lecturer, TAs, Readers, Lab
Assitants

�Family Trees

Trees…*shudder*

� The reason as to why
I don’t like them…

� But they’re cool �
and they’re a great
way to represent the
hierarchical data.

Kurt

Greg Alex Carolen

Binary Tree Traversals

� How you visit each node in a tree

� Three ways:
�Prefix: visit the node, left child, right child

� Infix: visit left child, node, right child
�Postfix: visit left child, right child, node

Binary Tree Traversals: Prefix

+ - 1 2 * 4 5

+

*-

1 2 4 5

7

Binary Tree Traversals: Infix

1 – 2 + 4 * 5

+

*-

1 2 4 5

Binary Tree Traversals: Postfix

1 2 – 4 5 * +

+

*-

1 2 4 5

Trees? Those things outside?

� Trees are a data structure.
� They can be implemented in many ways.

�Nodes have or don’t have data
�Extra information can be held in each node or

branch

�We talked about this in lecture today

Trees…what do you need?

� To implement trees you need most of the
following:
�Constructor: make-tree

�Selectors: datum, children
�Operations: apply function on each of the

datum, add/delete a child, count children,
count all datum.

8

Tree Abstraction

� Constructor:
(make-tree datum children)

� returns a tree where the datum is an element and
children is a list of trees

� Implementation:
� (define (make-tree datum children)

(cons datum children))
OR

� (define make-tree cons)

Tree Abstraction

� Selectors:
(datum tree)

� returns the element in
the node of the tree
(children tree)

� returns a list of trees
(a forest)

� Implementation:
� (define (datum tree)

(car tree))
(define (children tree)

(cdr tree))
OR

� (define datum car)
(define children cdr)

Tree Abstraction

� Procedures:
(leaf? tree)

� returns #t if the tree has no children, otherwise #f
(map-tree funct tree)

� Returns a tree where each datum is (funct datum)

� Implementation:
� (define (leaf? tree)

(null? (children tree)))
� We’ll leave map-tree for an exercise.

Tree Abstraction Practice

� (define a-t
‘(4 (7 (8) (5 (2) (4))) (5 (7)) (3 (4 (9)))))

�Draw a-t
� Root:
� Leaves:
� Underline Data

�Use tree abstraction to construct a-t

9

Tree Recursion

� So how to write operations on trees…
�So you can think of it like car/cdr recursion,

but with using the tree abstraction.

�You don’t need to check for the null? tree.

�Otherwise, you basically do something to the
datum and recurse through the children.

Tree Recursion

� How would you go about counting the
leaves in a tree. <What are leaves?>
�Steps for count-leaves:

� If the tree is a leaf return 1
� Otherwise it has children, so go through the list of

children by calling count-leaves on all of the
children

� Add everything up.

Tree Recursion

� (define (count-leaves tree)
(if (leaf? tree)

1
(count-leaves-in-forest (children tree))))

(define (count-leaves-in-forest list-of-trees)
(if (null? forest)

0
(+ (count-leaves (car list-of-trees))

(count-leaves-in-forest (cdr list-of-trees)))))

This is what we call mutual recursion! The two functions depend on
each other

Tree Recursion

� Wait…count-list-in-forest kinda looks like…
(define (accumulate op init lst)

(if (null? lst)
init
(op (car lst)

(accumulate op init (cdr lst)))))
� And we’re calling count-leaves with each child…it’s like

MAPPING!
� Why not use HOFs instead of creating a new procedure!

10

Tree Recursion w/ HOFs

� (define (count-leaves tree)
(cond ((null? tree) 0)

((leaf? tree) 1)
(else (accumulate + 0

(map count-leaves (children tree)))))

Doesn’t that look better �

Tree Recursion Practice

� Write tree-search
�Takes an element and a tree
�Returns #t if the element is found, otherwise

#f

�Use no Helper Procedures

Tree Recursion Answers

� (define (tree-search data tree)
(if (equal? (datum tree) data)

#t
(accumulate (lambda (x y) (or x y))

#f
(map (lambda (child)

(tree-search data child))
(children tree))))

Tree Operation Practice

� Write map-tree (We did this in class �)
�Takes a function and a tree
�Returns a new tree where the function is

applied to each of the datum

� Write update-nodes
�Returns you a new tree where all the nodes

are the sum of it’s children

11

Tree Operation Answers

� (define (update-nodes tree)
(if (leaf? tree)

tree
(let ((new-children

(map update-nodes (children tree))))
(make-tree (accumulate + 0

(map datum new-children))
new-children))))

Next Time: DDP &
Midterm Review…

…get your mind ready!

