Quiz: Box and Pointer fun!

- (cons (cons (cons 'hey
(cons 'there nil))
nil)
(cons 'wow nil))
- (list 'boo (append (list 'hoo 'hoo)
(cons 'see 'me)))

What we're doing today...

- Flat vs. Deep List Recursion
- Trees...what they are... and WHY I don't like them...
- Tree Recursion
- Intro to DDP

Flat vs. Deep Recursion

- Think about counting the elements in a list: ((a) ((b) c) d)

Flat vs. Deep Recursion

- How many elements are there in flat recursion?

Flat vs. Deep Recursion

- So think about flat recursion as the top level of the list....so just go through the backbone of a box and pointer diagram.
- Deep recursion goes through EVERY level of the list.

Flat vs. Deep Recursion

- How many elements in deep recursion?

Flat vs. Deep Recursion

- Last Discussion...
\square (define (deep-square L)
(cond ((null? L) nil)
((list? (car L)) (cons (deep-square (car L)) (deep-square (cdr L))))
(else (cons (square (car L))
(deep-square (cdr L))))))
- You thought that was easy?...let's shorten it even more!

Flat vs. Deep Recursion

- Using pair? or list?
\square (define (deep-square L)
(cond ((null? L) '())
((not (pair? L)) (square L)) (else (cons (deep-square (car L)) (deep-square (cdr L))))))
- Wasn't that easier?

Flat vs. Deep Recursion

- Templates!
\square Flat Recursion
(define (flat L)
(if (null? L)
<return value at the end of the list> <combine first \& recurse on 'cdr' list>))

Flat vs. Deep Recursion

 \squareDeep Recursion
 \squareDeep Recursion
 (define (deep L)
 (define (deep L)
 (cond ((null? L) <return value when end>)
 (cond ((null? L) <return value when end>)
 ((not (pair? L)) <do something to
 ((not (pair? L)) <do something to
 element>)
 element>)
 (else <combine recursive call to 'car'
 (else <combine recursive call to 'car'
 list & recursive call to 'cdr'
 list & recursive call to 'cdr'
 list>)))
 list>)))

Deep Recursion Practice

- Write deep-accumulate.
\square (deep-accumulate +0 '(1 (2 3) 4))
$\rightarrow 10$
It should work like the 3 argument accumulate but on deep lists. No HOFs

- Map DOESN'T care!
$\square(\operatorname{map} f($ list $'(x y z) \quad(a b c) '(d e f)))$ $\rightarrow\left(\left(f^{\prime}(x \mathrm{y} z)\right)\left(\mathrm{f}^{\prime}(\mathrm{abc})\right)\left(\mathrm{f}^{\prime}(\mathrm{d} \mathrm{e} f)\right)\right)$
- Map just applies the function to all the car's of a list.
- So the question is, how can we use map on deep lists?

Deep Recursion using HOFs

- It's AS easy as normal recursion.
- Let's take a closer look at what MAP does:
$\square($ map $f($ list $x y z))$
$\rightarrow((f x)(f y)(f z))$
- What if x, y and z were lists?

Deep Recursion using HOFs

- Well, look at the structure of deep-square. - (define (deep-square L)
(cond ((null? L) '())
((not (pair? L)) (square L))
(else (cons (deep-square (car L))
(deep-square (cdr L))))))
- Here is a new version using map:
define (deep-square-map L) ;;assume L is a lis
map (lambda (sublist) (cond ((null? sublist) sublist)
(not (pair? sublist)) (square sublist))
(else (deep-square-map sublist)))
L))

Deep Recursion Answer

- (define (deep-appearances x struct) (cond ((null? struct) 0)
((not (pair? struct))
(if (equal? x struct) 10))
(else (+ (deep-appearances x (car struct))
(deep-appearances x (cdr struct))))))
- Which condition isn't needed in this case?

Hierarchical Data

- Examples:
\square Animal Classification: Kingdom, Phylum... םGovernment: President, VP...etc. םCS Staff: Lecturer, TAs, Readers, Lab Assitants
\square Family Trees

Trees...*shudder*

- The reason as to why I don't like them...
- But they're cool ${ }^{-}$
 and they're a great way to represent the hierarchical data.

Binary Tree Traversals

- How you visit each node in a tree
- Three ways:
\square Prefix: visit the node, left child, right child -Infix: visit left child, node, right child \square Postfix: visit left child, right child, node

Trees? Those things outside?

- Trees are a data structure.
- They can be implemented in many ways. \square Nodes have or don't have data
-Extra information can be held in each node or branch
\square We talked about this in lecture today

Trees... what do you need?

- To implement trees you need most of the following:
-Constructor: make-tree \square Selectors: datum, children
\square Operations: apply function on each of the datum, add/delete a child, count children, count all datum.

Tree Abstraction

- Constructor:
(make-tree datum children)
\square returns a tree where the datum is an element and children is a list of trees
- Implementation:
\square (define (make-tree datum children)
(cons datum children))
OR
\square (define make-tree cons)

- Procedures:
(leaf? tree)
\square returns \#t if the tree has no children, otherwise \#f (map-tree funct tree)
\square Returns a tree where each datum is (funct datum)
- Implementation:
\square (define (leat? tree) (null? (children tree)))
\square We'll leave map-tree for an exercise.

Tree Abstraction

- Selectors:
(datum tree)
\square returns the element in the node of the tree (children tree)
\square returns a list of trees (a forest)
- Implementation:
\square (define (datum tree) (car tree)) (define (children tree) (cdr tree)) OR
\square (define datum car) (define children cdr)

Tree Abstraction Practice

- (define a-t
'(4 (7 (8) (5 (2) (4))) (5 (7)) (3 (4 (9))))))
-Draw a-t
- Root:
- Leaves:
- Underline Data
\square Use tree abstraction to construct a-t

Tree Recursion

- So how to write operations on trees... םSo you can think of it like car/cdr recursion, but with using the tree abstraction.
-You don't need to check for the null? tree
\square Otherwise, you basically do something to the datum and recurse through the children.
- If the tree is a leaf return 1
- Otherwise it has children, so go through the list of children by calling count-leaves on all of the children
- Add everything up.

Tree Recursion

- How would you go about counting the leaves in a tree. <What are leaves?>
-Steps for count-leaves:

This is what we call mutual recursion! The two functions depend on each other

Tree Recursion

- (define (count-leaves tree)
(if (leaf? tree)
1
(count-leaves-in-forest (children tree))))
(define (count-leaves-in-forest list-of-trees)
(if (null? forest)
0
(+ (count-leaves (car list-of-trees)) (count-leaves-in-forest (cdr list-of-trees)))))

Tree Recursion

- Wait...count-list-in-forest kinda looks like... (define (accumulate op init Ist)
(if (null? Ist)
init
(op (car Ist)
(accumulate op init (cdr Ist)))))
- And we're calling count-leaves with each child...it's like MAPPING!
- Why not use HOFs instead of creating a new procedure!

Tree Operation Practice

- Write map-tree (We did this in class $:$)
\square Takes a function and a tree
\square Returns a new tree where the function is applied to each of the datum
- Write update-nodes
\square Returns you a new tree where all the nodes are the sum of it's children

