
1

Data Directed
Programming

…let that data flow…

Intro to DDP

� Computers are not intelligent.
� By using different levels of Data Abstraction, we can

make different levels of the computer hierarchy act
intelligently.

� With Data Directed Programming (DDP) we can make
our data "informative" to our "smart" generic procedures,
and have it dictate the flow of our program. Instead of
having generic data where we apply a generic function,
we can have specific data that forces a generic program
to act like a type specific function.

Example…

� Lets look at an example of our boring generic
function perimeter, that cannot be expanded to a
generic function.
(define (sq-perimeter square)

(* 4 (get-side square)))
(define (ci-perimeter circle)

(* pi (get-diameter cirle)))
� What’s wrong with it?

Example…

� VERY INEFFICIENT!

� Need to know the type of data being passed to
each procedure

� Let’s create a general function that knows what
kind of procedure to apply on a specific shape

2

Idea of DDP…

� The idea of DDP is that the data is still kind of dumb, but it knows what type
it is.
(define (tag type data) (cons type data))
(define (type-tag data) (car data))
(define (extract-data data) (cdr data))

(define (make-square side) (tag side 'square))
(define (make-circle diameter) (tag diameter 'circle))

(define (generic-perimeter obj)
(let ((data (extract-data obj)))

(cond ((equal? (type-tag data) 'square)
(* 4 (get-side data)))
((equal? (type-tag data) 'circle)
(* pi (get-diameter data)))
(else (error "Bad type of object")))))

Idea of DDP…

� Now when we create squares and circles
using tag on our data, generic-perimeter
will apply the correct perimeter function to
the data.

� In other words, our data is directing the
flow of the function!

More shapes???

� What happens if we added more shapes?
� Well then inside the cond statement we would

have to add hundreds of more conditionals and
we might mess-up our earlier version of the
code.

� Lets make our procedure smarter!
� We can store functions (or values) in a table and

then simply retrieve the appropriate function
depending on the type of the object. Lets look at
our table commands:

The Global Table…

� Table
A 2-dimensional table that stores your information.

� Put
Places a value (or function) in a specific slot in your
table. It's syntax is (put x-val y-val value). Where value is
stored in the "box" (x-val, y-val)

� Get
Gets your entry out of the table and returns the value
you stored there (or #f if there is nothing at that point in
the table). The syntax is (get x-val y-val). Where you
return whatever is in the box at (x-val, y-val) or #f if
nothing was stored there

3

Using the table…

� Now we can just store all the perimeter functions in a table and apply them to the
correct arguments.

� Also we can write area functions that apply the correct area function for its shape!
Remember, when we return a function we should use lambda!
(put 'square 'perimeter (lambda (side) (* side 4)))
(put 'square 'area (lambda (side) (* side side)))
(put 'circle 'perimeter (lambda (diameter) (* pi diameter)))
(put 'circle 'area (lambda (diameter) (* (* (/ diameter 2) (/ diameter 2)) pi)))

(define (perimeter shape) (really-generic shape 'perimeter))
(define (area shape) (really-generic shape 'area))

(define (really-generic shape op-type)
(let ((procedure (get (type-tag shape) op-type)))

(if proc
(proc (extract-data shape))
(error "Bad type"))))

Recap of what we know…

� We’ve seen functional programming.
�Good for small programs that are easy to

follow

� Now we have Tagged Data & DDP
�Data can now dictate the flow of the program

�Data is ‘informative’ & procedures are ‘smart’

� So…what’s message passing?

Brief Intro to Message Passing

� Similar idea to data directed programming, but
this time data isn’t just informative.

� It’s SMART! More so a smart procedure!

� So to do something, all we need to do is ask the
data to do it.

� So we pass the data a message.

Brief Intro to Message Passing

� What’s a message?
�Also known as a dispatch
�An interface to the to the program, or data

� So you don’t need to know how it’s
implemented, just how it works. Aha!
Abstraction! �

4

Brief Intro to Message Passing
� Let’s take a look at MP in action!

(define (number n)
(lambda (message)

(cond ((equal? message 'add) (lambda (x) (+ x n)))
((equal? message 'sub) (lambda (x) (- n x)))
((equal? message 'scale) (lambda (x) (* n x)))
(else (se '(sorry, I don't know how to) message)))))

(define (make-imaginary x y)
(lambda (message)

(cond ((equal? message 'real) x)
((equal? message 'imag) y)
((equal? message 'add)
(lambda (z) (make-imaginary (+ (z 'real) x) (+ (z 'imag) y))))
((equal? message 'sub)
(lambda (z) (make-imaginary (- (z 'real) x) (- (z 'imag) y))))
((equal? message 'scale)
(lambda (n) (make-imaginary (* n x) (* n y)))))))

Brief Intro to Message Passing

� So numbers and imaginary numbers know how to add,
subtract, and scale instances of themselves from/to
other numbers.

� Try it out!
� (define two (number 2))
� (define 3+4i (make-imaginary 3 4))
� two
� (two 'add)
� ((two 'add) 4)
� ((two 'scale) 8)
� ((3+4i 'add) (make-imaginary 4 5))
� ((3+4i 'sub) (make-imaginary 4 5))

Brief Intro to Message Passing

� Even though there are completely different ways
to add, subtract, etc. different numbers, we can
just ask the ‘instance’ of the type of data to
perform the task without knowing how to operate
imaginary numbers

� We don’t need to know the implementation, but
just know what actions the data can perform
(interface) and ask the data to perform the task
for us.

DDP vs. MP
� What’s a dispatch????

With DDP, a dispatch call comes from the call to put, and get. The
dispatch returns a procedure to the generic program, which uses the
procedure to specifically implement a function. i.e. in DDP a
dispatch is the way in which the data tells the generic op what to do.
If we want to add another procedure when using DDP, we do not
have to change our generic op. All we have to do is give our
dispatch another procedure from which to choose. Remember DDP
means generic op's, and smart data which pick specific procedures
using an explicit dispatch.

With Message Passing, the book often uses the convention that a
"dispatch" is the message we pass to our argument. This dispatch is
similar to the "dispatch" we use with DDP. However, it is an explicit
dispatch. This dispatch (or message) does not depend on the type
of data, it depends on the availability of the interface. With MP, you
must explicitly call the dispatch procedure to work with data. It is
difficult to add procedures for which the dispatch can access, when
using MP. We actually have to go into the cond clause and add a
new phrase to add functionality to our data.

5

DDP vs. MP

� Where are the functions stored for each
data type?
�With DDP you store the procedures in a table

(using put/get).

�With Message Passing you store the
procedures in the data itself (in the lambda
expression).

DDP vs. MP
� Which one’s better?

Well that question is quite type specific. Mostly, we want
to know which style will provide us easier access to
creating and mutating data/procedures, and which
provides us the most encapsulation (well-defined
abstraction barrier).

� With DDP, it is much easier to add procedures. All we use is an
explicit call to put, and Bam! our procedure is ready to be called
via table lookup (get).

� Message Passing is easier to use for encapsulation purposes. If
someone implements an object (or class of objects) for us, we do
not have to know how to call the procedure. All we have to know
is the correct usage of such defined procedures.

Next
Time…MP�OOP

…don’t you love acronyms �

