
Administrivia
�

Project 3 Part A due 3/29 (Monday after SB)
 Part B due 4/5 (a week after)�

Everyone with a partner that wants a partner?�
Extra Office Hours on Sunday 3/28 in C50 from 1pm�

Midterm 3 on 4/14 (appr. 1 week after Part B is
due)�

Covers OOP to Concurrency
(week 8-11)�

What to expect on week we come back…�
Scheme-2 (the last of the interpreters before MCE)�
Vectors/Arrays�
Mutation…the list kind
�

Environment
Diagrams…

Practice…it’s on!

Agenda

�
Step by Step Environment Diagram Stuff
�

Practice, Practice, Practice

The Rules
�

What are “The Rules” ?
�

They’re a set of guidelines to follow when
doing environment diagrams�
Follow The Rules and you’ll be an
environment diagram MASTER!
�

Once you’ve mastered it, you never need to
look at them again � (But keep them for
reference)
�

Remember…
DON’T THINK, JUST DO! �

The Rules
�

EVERY expression typed into Scheme is
either an atom or a list

So believe it or not…

STk > (define (a) 3) ;;
�

 THIS is a LIST!

The Rules
�

There is ALWAYS a current frame.
�

Initially it’s the global environment

G
Primitives live

here

The Rules : Atoms
�Self-Evaluating: Numbers, Strings, #t, #f

Example:
STk > 1 ;; no need to do anything
1

�Symbols: (aka variables) look for first binding
Example:
STk > x ;; say if (define x 3)
3

The Rules : Lists (aka Compound
Expressions)
�

Take the car of it, if it’s a special form go to
SPECIAL FORMs of The Rules
i.e. (define (foo x) 3)�
Otherwise you’re calling a procedure!
i.e. (square 3)�

So evaluate ALL subexpressions by The Rules then...�
If car is primitive � apply by magic
i.e. (+ 2 3) � *poof* it returns 5�
If car is a � then…�Create frame, f�Point f to where � points�Bind formal parameters of � in f & make f the current frame�Use The Rules to evaluate the body of � in f

The Rules : Special Forms
�

DESUGAR!
�

Define: (define (foo x) …)
�

 (define foo (�
(x) …))�Write variable name in current frame�Evaluate body by The Rules in CF (current

frame)�Point 1 (variable name) � 2 (evaled body)

�
Let

1. ((� (args) body) vals) � just evaluate again by
The Rules

The Rules : Special Forms

��
�

 procedure (� (params) body)
�Draw Bubbles!
�Left Bubble points to parameters and body
�Right Bubble points to CF (current frame) where

it’s being evaluated CF

Params: …
Body: …

Super Simple Example
�

What happens when we type:

STk > (define x 3)

First off everything from the STk prompt will be
evaluated starting from the global environment.
So this expression is saying…

“ evaluate the expression (define x 3) in the
global environment”

Super Simple Example

�
So what’s next?
STk > (define x 3)
�

Let’s look at The Rules
�

Is it an Atom?
�

Is it a List?
No!

YES!

Super Simple Example
�

So let’s take the car of the expression
define
�

 lookie it’s a special form!

�
Go to the Special Form section of The Rules!

�
No need for any desugaring because the first
argument to define is a variable not another list
like (define (x) 3), so let’s continue on…

Super Simple Example

(define x 3)
So it says in The Rules
write the variable name
in the current frame
so…

then evaluate the
body…

Then point 1�2

G

x 3

Tada!

�
So that’s an easy variable binding
example.

�
Let’s do one more easy procedure and
then we’ll do more problems!

Another Example

(define (f x) (+ x 2))�
So what do we do first with this
expression?�
First off, it’s a list, second off the car is
define so…�
DESUGAR!
(define f (� (x) (+ x 2)))

Another Example

1. Next Write the variable
name in the current
frame

2. Evaluate the body by
The Rules

1. (� (x) (+ x 2))
2. It’s a list, the car’s a �

so….
3. Draw Bubbles!

3. Now Point 1�2

G

f

P: x
B: (+ x 2)

Another Example…Call
�

So let’s call the procedure
STk > (f 17)
So what happens now?�

It’s a list, the car is NOT a special form, so
evaluate all the subexpressions�
f is a procedure (let’s call this)�
17 is self-evaluating�
So now you have (17)

Another Example…Call
�

So take the car, it’s
just a �, so�

Create a frame, F1�
Point F1 to where the
right bubble of points�
Bind formal parameters
of in F1, make F1
the current frame�
Use The Rules to eval
the body of in F1�
Returns 19 magically
by ‘+’

G

f

P: x
B: (+ x 2)

F1

x � 17

CF

(+ x 2)
(#[closure..] x 2)
(#[closure...] 17 2)
(#[closure...] 17 2)

So LET’s do this…

�
Remember that you couldn’t do
(let ((y 10)

 (f (� (x) (+ x y))))
 (f 3))
just through intuition…but now see the
REAL reason why…let’s draw the
environment diagram for this expression.

So LET’s do this…
(let ((y 10) (f (� (x) (+ x y))))

(f 3))�It’s a list! Take the car , it’s the special
form LET so…�DESUGAR!
((� (y f) (f 3))
 10
 (� (x) (+ x y)))�Evaluate all subexpressions�(� (y f) (f 3)) � ��10 � 10�(� (x) (+ x y))) � ��Now call the procedure ��Create a frame, F1�Point F1 to where �’s right bubble

points�Bind formal parameters y & f in F1,
make F1 the current frame�Use The Rules to eval the body of �
in F1

G

�
P: y, f
B: (f 3)

P: x
B: (+ x y)

	

CF

F1

y
 10
f
 �

So LET’s do this…
((� (y f) (f 3))

 10
 (� (x) (+ x y)))
So the body of
�

 is: (f 3)
It’s a list, the car’s not a
special form, eval all subexp�

(� 3)Now call
	

 on 3�
Create a frame, F2�
Point F2 to where �’s right
bubble points�
Bind formal parameters in F2,
make F2 the current frame�
Use The Rules to eval the
body of �

G

P: x
B: (+ x y)

P: y, f
B: (f 3)

F1

y
 10
f
 �

	

�

F2

x
 3 (+ x y)
(#[closure] x y)
(#[closure] 3 y)
error!

CF

Okay that’s enough of that…

�
So hopefully you’re comfy with easy
problems.

�
Now let’s do some more…don’t you love
me �

