Administrivia

- Project 3 Part A due 3/29 (Monday after SB) Part B due 4/5 (a week after)
\square Everyone with a partner that wants a partner? \square Extra Office Hours on Sunday $3 / 28$ in C50 from 1pm
- Midterm 3 on $4 / 14$ (appr. 1 week after Part B is due)
\square Covers OOP to Concurrency (week 8-11)
- What to expect on week we come back...
\square Scheme-2 (the last of the interpreters before MCE)
\square Vectors/Arrays
\square Mutation...the list kind (:)

Agenda

- Step by Step Environment Diagram Stuff
- Practice, Practice, Practice

The Rules

- What are "The Rules"?
\square They're a set of guidelines to follow when doing environment diagrams
\square Follow The Rules and you'll be an environment diagram MASTER!
\square Once you've mastered it, you never need to look at them again $)$ (But keep them for reference)
\square Remember...
DON'T THINK, JUST DO! :

The Rules

- EVERY expression typed into Scheme is either an atom or a list

So believe it or not...
STk $>$ (define (a) 3) ;; \leftarrow THIS is a LIST!

The Rules: Atoms

- Self-Evaluating: Numbers, Strings, \#t, \#f Example:
STk > 1 ;; no need to do anything
1
- Symbols: (aka variables) look for first binding Example:
STk > x ; say if (define $\times 3$)
3

The Rules: Lists (aka Compound Expressions)

- Take the car of it, if it's a special form go to SPECIAL FORMs of The Rules
i.e. (define (foo x) 3)

■ Otherwise you're calling a procedure!
i.e. (square 3)
\square So evaluate ALL subexpressions by The Rules then...
\square If car is primitive \rightarrow apply by magic
i.e. $(+23) \rightarrow{ }^{*}$ poof* it returns 5
\square If car is a λ then.

- Create frame, f

Point f to where λ points

- Bind formal parameters of $\boldsymbol{\lambda}$ in f \& make f the current frame

Use The Rules to evaluate the body of λ in f

The Rules: Special Forms

- DESUGAR!
\square Define: (define (foo x) ...) \rightarrow (define foo (λ (x) ...))
- Write variable name in current frame
- Evaluate body by The Rules in CF (current frame)
- Point 1 (variable name) $\rightarrow 2$ (evaled body)

Let

1. $((\lambda$ (args) body $)$ vals $) \leqslant$ just evaluate again by The Rules

The Rules: Special Forms
$\square \lambda \rightarrow$ procedure (λ (params) body)

- Draw Bubbles!
- Left Bubble points to parameters and body
- Right Bubble points to CF (current frame) where it's being evaluated $\mathbf{C F}$

Super Simple Example

- What happens when we type:

STk > (define x 3)

First off everything from the STk prompt will be evaluated starting from the global environment. So this expression is saying...
"evaluate the expression (define $\times 3$) in the global environment"

Super Simple Example

- So what's next?

STk > (define x 3)

- Let's look at The Rules
- Is it an Atom? No!
- Is it a List? YES!

Super Simple Example

- So let's take the car of the expression define lookie it's a special form!
- Go to the Special Form section of The Rules!
- No need for any desugaring because the first argument to define is a variable not another list like (define (x) 3), so let's continue on...

Super Simple Example

(define x 3)
So it says in The Rules
write the variable name
in the current frame
so...
then evaluate the
body...
Then point $1 \rightarrow 2$

Another Example

(define (f x) (+ x 2))

- So what do we do first with this expression?
- First off, it's a list, second off the car is define so...
- DESUGAR!
(define $\mathrm{f}(\boldsymbol{\lambda}(\mathrm{x})(+\mathrm{x} 2)$))

Another Example

1. Next Write the variable

Another Example...Call

- So take the car, it's just a λ, so
\square Create a frame, F1
\square Point F1 to where the right bubble of \geqslant points \square Bind formal parameters of $\begin{gathered} \\ \text { in } \\ \text { F1, make F1 }\end{gathered}$ the current frame
\square Use The Rules to eval the body of \hbar in F1
\square Returns 19 magically by ' + '
name in the current frame

2. Evaluate the body by The Rules
($\lambda(\mathrm{x})(+\mathrm{x} 2))$
It's a list, the car's a λ so....
Draw Bubbles!
3. Now Point $1 \rightarrow 2$

Another Example...Call

- So let's call the procedure

STk > (f 17)
So what happens now?
\square It's a list, the car is NOT a special form, so evaluate all the subexpressions
$\square f$ is a procedure (let's call this \star)
$\square 17$ is self-evaluating
\square So now you have ($\underset{\star}{ } 17$)

So LET's do this...

- Remember that you couldn't do
(let ((y 10)
$(f(\lambda(x)(+x y)))$
(f 3))
just through intuition...but now see the REAL reason why...let's draw the environment diagram for this expression.

So LET's do this..

(let $\left(\left(\begin{array}{l}\text { 10) } \\ (f 3)) \\ (f) \\ (\lambda(x)(+x y))))\end{array}\right.\right.$
It's a list! Take the car, it's the special
form LET so...
DESUGAR!
($\boldsymbol{\lambda}(\mathrm{y}$ f) f (f)
${ }_{10}(\boldsymbol{\lambda}(\mathrm{yf})(\mathrm{f} 3))$
$(\lambda(x)(+x y)))$

- Evaluate all subexpressions
$(\lambda(y f)(f 3)) \rightarrow$ ©
$10 \rightarrow 10$
Now call the p)) $\rightarrow \beta$
Create a frame, F1
Create a frame, F1
point F1 to where © ©'s right bubble Bind formal parameters y \& f
make $F 1$ the current frame Use The Rules to eval the body

Okay that's enough of that...

- So hopefully you're comfy with easy problems.
- Now let's do some more...don't you love
me :

So LET's do this...
(λ (y f) (f 3)) 10 $(\lambda(x)(+x y))$

- So the body of :) is: (f 3
- It's a list, the car's not a special form, eval all subexp - (よ3)
- Now call 』 on 3

Create a frame, F2 Point F2 to where $\sqrt{ }$'s right bubble points
Bind formal parameters in F2, make F2 the current frame se The Rules to eval the body of ρ

