CS61A Midterm2 Review Problems – Solutions
An ordered list, in order of what’s important to study:

1. Midterm practice problems in the reader
2. Lecture notes

3. Discussion notes

4. Homework, labs

5. Books – use these just for reference; we won’t test you on obscure details in the book, just the big concepts. If you are fine with the above items, you should be fine for the midterm. EXCEPT, though, for the data-directed programming part, since neither the lectures nor the discussions went into much detail about that.
Topics covered by the exam: list, deep-list, binary search trees, general trees, data abstraction, data-directed programming, message passing, Scheme1 evaluator
Topics not covered by this review: data-directed programming, data abstraction, message passing. These are not difficult (though important nonetheless); study the lecture notes and the book for these!
1. Draw box-and-pointer diagrams for the following structures:
From the Unix command prompt, type “envdraw” and press enter. Then something that looks a lot like STk will launch. At the STk prompt, type this:

STk> (envdraw)

This pops up a new window, and you go into this Envdraw prompt. Try typing this:

Envdraw> (define x ‘(1 2))

In the other window, you will see the box-and-pointer diagram of the structure x is bound to. You can use the same to see the box-and-pointer diagrams for the following:
‘(a (b c d) (((e) f) g))

(if (= 2 3) ‘(1 2) ‘(3 4))
‘(if (= 2 3) ‘(1 2) ‘(3 4))

2. Our goal is to define a procedure (coolize ls) that does this:

STk> (coolize ‘(1 2 3 4 5))

(1 (2 (3) 4) 5)

STk> (coolize ‘(a b c d e f))

(a (b (c () d) e) f)

We’ll build up to it:

a. Define a procedure (last ls) that returns the last element of a list.

(define (last ls)

(cond ((null? (cdr ls)) (car ls))

 (else (last (cdr ls)))))
b. Define a procedure (trimmed ls) that takes in a list and returns the same list without the first and last element. So,

(trimmed ‘(1 2 3 4 5 6)) ==> (2 3 4 5)

(trimmed ‘()) ==> ()

(trimmed ‘(1)) ==> ()

(trimmed ‘(1 2)) ==> ()

Here’s the cool way to do it:

(define (trimmed ls)

(cond ((<= (length ls) 2) ‘())

(else (reverse (cdr (reverse (cdr ls)))))))
is this more or less efficient than the above?

(define (trimmed ls)

 (define (helper ls count length)

 (cond ((= count length) '())

 ((= count 1) (helper (cdr ls) (+ 1 count) length))

 (else (cons (car ls)

 (helper (cdr ls) (+ 1 count) length)))))

 (helper ls 1 (length ls)))

just another way to do it

(define (trimmed ls)

(define (helper ls)

(cond ((null? ls) ‘())

((null? (cdr ls)) ‘())

(else (cons (car ls) (helper (cdr ls))))))

(cond ((null? ls) ‘())

(else (helper (cdr ls)))))
c. Now, implement coolize.
(define (coolize ls)

(cond ((null? ls) ‘())

((null? (cdr ls)) ls)

(else (list (car ls)

(coolize (trimmed ls))

(last ls)))))
3. Write a procedure, (tree-member? x tree) that takes in an element and a general tree, and returns #t if x is part of tree, and #f otherwise.
(define (tree-member? x tree)

(if (eq? (datum tree) x)

 #t

 (forest-member? x (children tree))))

(define (forest-member? x forest)

(cond ((null? forest) #f)

((tree-member? (car forest) x) #t)

(else (forest-member? x (cdr forest)))))
4. Write a procedure, (smallest-containing-tree tree x y) that takes in a general tree and two elements x and y, and returns the smallest subtree of tree containing both x and y. If tree does not contain x and y, return #f. You can use tree-member?.

(define (smallest-containing-tree tree x y)

(if (and (tree-member? tree x)

(tree-member? tree y))

 (or (smallest-containing-tree-of-forest (children tree) x y)

 tree)

 #f))

(define (smallest-containing-tree-of-forest forest x y)

(if (null? forest)

 #f

 (or (smallest-containing-tree (car forest) x y)

 (smallest-containing-tree-of-forest (cdr forest) x y))))
5. Write a procedure, (flatten ls) that takes in a deep list and flattens all the elements into a flat list. For example,

(flatten ‘(1 (2 (3 4 ((5 6) 7) 8) 9) 10)) ==> (1 2 3 4 5 6 7 8 9 10)

(define (flatten ls)

(cond ((null? ls) ‘())

((atom? ls) (list ls))

(else (append (flatten (car ls))

 (flatten (cdr ls))))))
6. Write a procedure, (num-sum exp) that takes in a valid Scheme expression, and returns the sum of all numbers that occurs in that expression. For example,

(num-sum ‘(if (= 2 3) (lambda(x) (+ x 3)) 10)) ==> 18

(define (num-sum exp)

(cond ((number? exp) exp)

((atom? exp) 0)

(else (+ (num-sum (car exp))

(num-sum (cdr exp))))))
7. Write a procedure, (square-nums exp) that takes in a valid Scheme expression, and returns the same expression with every number squared. For example,

(square-nums ‘(if (= 2 3) (lambda(x) (+ x 3)) 10)) ==>

(if (= 4 9) (lambda(x) (+ x 9)) 100))

(define (square-nums exp)

(cond ((number? exp) (square exp))

((atom? exp) exp)

(else (map square-nums exp))))
8. De Morgan's Law
Consider a subset of Scheme with only operators and, or and not. Furthermore, and and or always take in exactly two arguments, and not takes in one. You can express all kinds of boolean expressions, like

(and (not (or a b)) (or c (and d e)))

De Morgan's Law says that the following two boolean expressions are equivalent:

(not (and a b)) <==> (or (not a) (not b))

Therefore, for example, these are equivalent:

(or (not (and a b)) c) <==> (or (or (not a) (not b)) c)

(not (and (and a b) c)) <==> (or (or (not a) (not b)) (not c))

Suppose we've written a procedure for you, not-and-exp?, that takes in an expression and returns #t if that expression is of the form (not (and ...)). This is defined thus:

(define (not-and-exp? exp)

 (and (pair? exp)

 (eq? (car exp) 'not)

 (pair? (cadr exp))

 (eq? (caadr exp) 'and)))

Write a procedure, (demorganize exp), that takes in a boolean expression and applies De Morgan's law over it wherever possible.

(define (demorganize exp)

(cond ((atom? exp) exp)

((not-and-exp? exp)

 (demorganize (list ‘or

 (list ‘not (cadr (cadr exp)))

 (list ‘not (caddr (cadr exp)))))

(else (map demorganize exp))))
9. In Scheme1’s maybe-quote, suppose we replace this line:

(list ‘quote value)

With this line instead:

(quote value)

What would happen? Give an expression that would cause an error, and specify the error.

Any expression that would cause maybe-quote to use (quote value) would throw an error:
((lambda(x) (cons x x)) ‘foo)

This is because, instead of substituting in for x the list (quote foo), it’s going to substitute in just the symbol value (remember, typing (quote value) into STk is the same as just typing ‘value, and clearly, that’s just the symbol “value”). Thus, we’ll get an unbound variable “value” error.

What about doing ‘(quote value)?
10. Suppose we make the following call inside Scheme-1:

((lambda(x y) (x y)) (lambda(z) (* z z)) 3)

How many times will lookup return 3 when called by substitute?

3 times; once for y, and once for each of the two z.
