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CS61A Notes 10 – Now The Mutants Attack (v1.1)
That Which Look The Same May Not Be The Same (Thy eyes are devil’s idle playthings)
Now is a good time to bring up what you’ve noticed all along – there are different degrees of “sameness” in Scheme.  Or, more specifically, things can be equal?, and things can be eq?.  Now you’re finally old enough to know the truth.
equal? is used to compare values.  We say two things are equal? if they evaluate to the same thing.  For example, (equal? ‘(2 3 4) ‘(2 3 4))  returns #t, since both are lists containing three elements: 2, 3 and 4.  This is the comparison method that you’re all familiar with.

eq?, however, is used to compare objects.  We say two things are eq? if they point to the same object.  For those of you proficient in C, you may think that x eq? y if x and y are both pointers holding the same address values.
Or, in short, (eq? ‘(2 3 4) ‘(2 3 4)) returns #f, because, though the two lists hold the same values, they are not the same list!
Consider these:


(define x (list 1 2 3)) (define y (list 1 2 3)) (define z x)

Then (eq? x y) returns #f but (eq? z x) returns #t.  How many lists are created total?
(weird) QUESTION

We can also test if procedures are equal?.  Consider this:


> (define (square x) (* x x))


> (define (sqr x) (* x x))


> (eq? square sqr) ==> #f


> (equal? square sqr) ==> #f

It’s obvious that square and sqr are not eq?.  But they’re also not equal? because for procedures, equal? does the same thing as eq?.  Why can’t we tell that square and sqr really do the same thing – and thus, should be “equal?”?
Teenage Mutant Ninja…  err, Schemurtle (you try to do better)

Mutation refers to changing a data structure.  Since our preferred data structure are pairs, naturally, then, to perform mutation on pairs, we have set-car! and set-cdr!.   Note that set-car! and set-cdr! are NOT special forms!  That’s why you can execute things like (set-car! (cdr lst) (+ 2 5)).
To write procedures that deal with lists by mutation (rather than by constructing entirely new lists like we’ve done so far), here’s a possible approach: first, try to do the problem without using mutation, as you normally would.  Then, whenever you see cons used in your procedure, think about how you can modify the procedure to use set-car! or set-cdr! instead.

Do not confuse set-car! and set-cdr! with set!.  set! is used to change the value of a variable, or, what some symbol in the environment points to.  set-car! and set-cdr! are used to change the value inside a cons pair, and thus to change elements and structure of lists, deep-lists, trees, etc.  They are not the same!
Also, in working with lists, you’ll often find that you use set-car! to change elements of the list, and set-cdr! to alter the structure of the list..  This shouldn’t be a surprise – recall that in a list, the elements are the car of each pair, and the subsequent sublists are the cdr.  But don’t be fool into thinking set-car! is always for element changes and set-cdr! is always for structural changes; in a richer data structure, either can be used for anything.
QUESTIONS

1. Personally, I think set-car! and set-cdr! are pretty useless too; we can just implement them using set!.  Check out my two proposals for set-car!  Do they work, or do they work?  Prove me wrong by drawing box-and-pointer diagrams.

a. (define (set-car! thing val)



(set! (car thing) val))

b. (define (set-car! thing val)



(let ((thing-car (car thing)))




(set! thing-car val)))

2. I’d like to write a procedure that, given a deep list, destructively changes all the atoms into the symbol chung:

> (define ls ‘(1 2 (3 (4) 5)))

> (glorify! ls) ==> return value unimportant

> ls ==> (chung chung (chung (chung) chung))

 Here’s my proposal:
(define (glorify! L)


(cond ((atom? L)




 (set! L ‘chung))


 
(else (glorify! (car L))





(glorify! (cdr L)))))

Does this work?  Why not?  Write a version that works.
3. We’d like to rid ourselves of odd numbers in our list:

(define my-lst ‘(1 2 3 4 5))

a. Implement (no-odd! ls) that takes in a list of numbers and returns the list without the odds, using mutation: (no-odd! my-lst) ==> ‘(2 4)
b. Implement (no-odd! ls) again.  This time, it still takes in a list of numbers, but can return anything.  But after the call, the original list should be mutated so that it contains no odd numbers.  Or,

(no-odd! my-lst) ==> return value unimportant
my-lst ==> ‘(2 4)

4. It would also be nice to have a procedure which, given a list and an item, inserts that item at the end of the list by making only one new cons cell.  The return value is unimportant, as long as the element is inserted.  In other words,

> (define ls ‘(1 2 3 4))

> (insert! ls 5) ==> return value unimportant

> ls ==> (1 2 3 4 5)
Does this work?  If not, can you write one that does?


(define (insert! L val)

(if (null? L)


 (set! L (list val))


 (insert! (cdr L) val)))

5. Write a procedure, remove-first! which, given a list, removes the first element of the list destructively.  You may assume that the list contains at least two elements.  So,

> (define ls ‘(1 2 3 4))

> (remove-first! ls) ==> return value unimportant

> ls ==> (2 3 4)

And what if there’s only one element?

6. Implement our old friend’s ruder cousin, (reverse! ls).  It reverses a list using mutation.
7. Implement (deep-map! proc deep-ls) that maps a proc over every element of a deep list, without allocating any new cons pairs.  So,
(deep-map! square ‘(1 2 (3 (4 5) (6 (7 8 ())) 9))) ==>

‘(1 4 (9 (16 25) (36 (49 64 ())) 81))

8. Implement (interleave! ls1 ls2) that takes in two lists and interleaves them without allocating new cons pairs. 
Scheme2: The Environmentalists Strike Back
Scheme2 is the last of the baby evaluators before we start shoving all sorts of crazy evaluators down your throat in two weeks.  So look upon it with reluctant sadness.  I’m not particularly fond of Scheme2, though, but it is important.
The big difference between Scheme2 and the previous baby Schemers is that Scheme2 actually uses some sort of an environment model as opposed to the substitution model.  We represent the environment with a list of cons pairs whose car is the name of a variable, and the cdr the value it is bound to.  Now, whenever eval-2 encounters a symbol, it will try to lookup its value in the environment.  Read the code to see how it works; I’ve already gone over this in the lab.
Another big change is in how we represent a procedure.  Recall that, for Scheme1, we represent a compound procedure as a list that looks exactly like the lambda expression that created it.  I mentioned that it’s pure coincidence that the procedure value and the lambda expression look the same.  In Scheme2, they don’t look the same anymore.  More specifically, we need a richer representation of compound procedures because we need to keep track of the procedure environment of each procedure.  Thus, a procedure is now a list starting with the symbol procedure, followed by the lambda expression that created it, followed by the procedure environment.
QUESTIONS

1. What’s the point of having that (list ‘*TABLE*) thing at the beginning of the-global-environment and the procedure environment?  Can we do without it?

2. Take a look at the put procedure; it always adds a new binding to be beginning of the environment. For example, when I do this:

> (define x 20)

> (define x 40)

> x ==> ??

Then Scheme2 would create two bindings in the environment.  More specifically, the global environment would look like (*TABLE* (x . 40) (x . 20)).  What, then, would be the value of x?  What in Scheme2’s code makes this happen?

3. This works:

> (‘(procedure (lambda(x) (* x x)) ‘()) 3) ==> 9

Why?  What can we do to prevent this? 

4. Implement the begin special form for Scheme-2.

This Is Now (The New-And-Improved Way)

Of course, we’re going to run through the same example with Scheme2 that we did for Scheme1:

(((lambda (x) ((lambda (y) (lambda (x) (+ x y x))) x)) 5) 10)
(
eval-2 called with (((lambda (x) ((lambda (y) (lambda (x) (+ x y x))) x)) 5) 10), and env (*table*).  A procedure call!  What’s the first element?


(
eval-2 called with ((lambda (x) ((lambda (y) (lambda (x) (+ x y x))) x)) 5), and env (*table*).  Another procedure call!  What’s the first element?



(
eval-2 called with (lambda (x) ((lambda (y) (lambda (x) (+ x y x))) x)) and env (*table*).  This is a lambda statement, so make a procedure with the current env as the procedure-environment (which, in this case, is empty).



(
eval-2 returns 



(procedure (lambda(x)((lambda(y)(lambda(x)(+ x y x))) x)) (*table*)), which concludes evaluation of the first element.  What’s the second element?  Well, it’s 5, which is self-evaluating.  So done!  Now, apply the first to the second:



(
apply-2 called with proc



(procedure (lambda(x)((lambda(y)(lambda(x)(+ x y x))) x)) (*table*))

and argument list (5).  apply-2 sees this as a compound procedure, so it calls eval-sequence on the body of the procedure, with the env being parameter-argument bindings and the procedure-environment (empty in this case).   eval-sequence will then call…
· eval-2 called with ((lambda (y) (lambda (x) (+ x y x))) x) and inner-env ((x . 5)).  The expression looks like another procedure call!  What’s the first element?

(
eval-2 called with (lambda (y) (lambda (x) (+ x y x))) and env (*table* (x . 5)).  This is a lambda expression, so make a procedure with the env!

(
eval-2 returns (procedure (lambda(y)(lambda(x) (+ x y x))) (*table* (x . 5))), which finishes evaluation of the first element.  Second element?
(
eval-2 called with x and env (*table* (x . 5)).  Well, x is a symbol, so we try to look up x in the env.  We find it immediately.

(
eval-2 returns 5.  Both expressions are evaluated, so it’s time to apply!

(
apply-2 called with proc

(procedure (lambda(y)(lambda(x) (+ x y x))) (*table* (x . 5))),

and argument list (5).  It calls eval-sequence on the body, as before, resulting in:

(
eval-2 called with (lambda (x) (+ x y x)) and env (*table* (y . 5) (x . 5)).  This is a lambda expression, so make-proc with the current env!

· eval-2 returns 

(procedure (lambda(x)(+ x y x))(*table* (y . 5)(x . 5)))
(
apply-2 returns the same thing.



(
eval-2 returns the same thing.


(
apply-2 returns the same thing.

(
eval-2 returns the same thing, for  the first expression.  What’s the second expression?  Well, it’s 10, which is self-evaluating.  Time to apply!


(
apply-2 called with proc (procedure (lambda(x)(+ x y x))(*table* (y . 5)(x . 5))) and the argument list (10).  It’s a compound procedure, so call eval-sequence on the body with the parameter-argument bindings and the procedure-environment as env, as before.


(
eval-2 called with (+ x y x) and env ((x . 10)(y . 5)(x . 5)).  This is a procedure call; what’s +?  It’s a primitive procedure.  What’s x?  It’s 10 (why not 5?).  What’s y?  It’s 5.  What’s x?  It’s 10.  Time to apply!

· apply-2 called with + (a primitive!) and argument list (5 10 5). Use STk’s apply.

(
apply-2 returns 25


(
eval-2 returns 25

(
apply-2 returns 25
(
eval-2 returns 25
I’ve made additions to Scheme-2 to help you see the environments more concretely.  You can download this version of Scheme-2 at http://inst.eecs.berkeley.edu/~cs61a-td/scheme2r.scm
Now, you can print out the environment that eval-2 sees:
Scheme-2: (pe) ==> prints out current bindings in the-global-environment. 

You can also print out the procedure environment:

Scheme-2: (define foo (lambda(x) (lambda(y) (pe) (+ x y))))

Scheme-2: (define bar (foo 3))

Scheme-2: (ppe bar) 

==> prints out bindings that include (x . 3) and whatever else is in the-global-environment.
Scheme-2: (bar 5) 
==> the (pe) call in the body of bar will print out bindings for (x . 3) and (y . 5), both visible to eval-2 at that point.
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