

CS61A Notes 10 – Now The Mutants Attack [Solutions v1.0.1]
That Which Look The Same May Not Be The Same (Thy eyes are devil’s idle playthings)
(weird) QUESTION
We can also test if procedures are equal?. Consider this:

> (define (square x) (* x x))

> (define (sqr x) (* x x))

> (eq? square sqr) ==> #f

> (equal? square sqr) ==> #f
It’s obvious that square and sqr are not eq?. But they’re also not equal? because for procedures, equal? does the same thing as eq?. Why can’t we tell that square and sqr really do the same thing – and thus, should be “equal?”?
The problem wants to check that square and sqr are “equal” in the sense that, given the same input, they always return the same output. This is impossible, and has been proven to be impossible! (You will see more of this in CS70). Therefore the most we can do is compare whether two things are the same procedure, not whether they’re the same function.
Teenage Mutant Ninja… err, Schemurtle (you try to do better)
QUESTIONS
1. Personally, I think set-car! and set-cdr! are pretty useless too; we can just implement them using set!. Check out my two proposals for set-car! Do they work, or do they work? Prove me wrong by drawing box-and-pointer diagrams.
a. (define (set-car! thing val)

(set! (car thing) val))
Doesn’t work – set! is a special form! It cannot evaluate what (car thing) is.
b. (define (set-car! thing val)

(let ((thing-car (car thing)))

(set! thing-car val)))
Doesn’t work. thing-car is a new symbol bound to the value of (car thing), and the set! statement simply sets the value of thing-car to val, without touching the original thing at all.
2. I’d like to write a procedure that, given a deep list, destructively changes all the atoms into the symbol chung:
> (define ls ‘(1 2 (3 (4) 5)))
> (glorify! ls) ==> return value unimportant
> ls ==> (chung chung (chung (chung) chung))

 Here’s my proposal:
(define (glorify! ls)

(cond ((atom? ls)

 (set! ls ‘chung))

(else (glorify (car ls))

(glorify (cdr ls)))))
Does this work? Why not? Write a version that works.
No. Remember, to manipulate elements of a list, you need to use set-car! or set-cdr!. set! sets ls to ‘chung when ls is an atom, but once we return, the new value for ls is lost. Here’s a way to do this:
(define (glorify! ls)

(cond ((null? ls) ‘())

((atom? ls) ‘chung)

(else (set-car! ls (glorify! (car ls)))

(set-cdr! ls (glorify! (cdr ls)))

ls)))
We need to return ls because the set-car! and set-cdr! expressions expect glorify! to return something – namely, the transformed sublist.
3. We’d like to rid ourselves of odd numbers in our list:
(define my-lst ‘(1 2 3 4 5))
a. Implement (no-odd! ls) that takes in a list of numbers and returns the list without the odds, using mutation: (no-odd! my-lst) ==> ‘(2 4)
(define (no-odd! ls)

(cond ((null? ls) ‘())

((odd? (car ls)) (no-odd! (cdr ls)))

(else (set-cdr! ls (no-odd! (cdr ls)))

ls)))
b. Implement (no-odd! ls) again. This time, it still takes in a list of numbers, but can return anything. But after the call, the original list should be mutated so that it contains no odd numbers. Or,
(no-odd! my-lst) ==> return value unimportant
my-lst ==> ‘(2 4)
This, I fear, is not possible. Note that we need to skip the first element (the 1), so we’d like to do something like (set! my-lst ...) to have it point to the solution instead of the cons pair containing 1 as the car. However, inside the procedure no-odd!, we have no way of doing that; we can set! ls to all our heart’s content, but we have no way of altering the value of my-lst. Make sure you understand why; this point is crucial.
There is hope – with use of sentinels. If we always represent lists like so:
(define (new-list first . rest)

(cons #f (cons first rest)))
where (new-list 1 2 3 4 5) ==> (#f 1 2 3 4 5), then we can do this:
(define (no-odd! ls)

(cond ((null? ls) ‘())

((null? (cdr ls)) ls)

((odd? (cadr ls)) (set-cdr! ls (no-odd! (cddr ls))) ls)

(else (set-cdr! ls (no-odd! (cdr ls))) ls)))
Carefully consider how the new representation of lists allowed us to do that. What we wanted to be able to do was to have my-lst point to something else (other than the pair containing 1). But we had no way to do that. So instead, we have my-lst point to some useless thing – like a pair containing #f – and, with that, we’ll be able to set! the first element of the list to something else. If that’s clear as mud, draw a few box-and-pointer diagrams!
We used the word “sentinel” to refer to #f. A “sentinel” is a meaningless value at the start of a data structure that allows us to do what we did above. It also makes the code look prettier, as in the remove! procedure presented in lecture.
4. It would also be nice to have a procedure which, given a list and an item, inserts that item at the end of the list by making only one new cons cell. The return value is unimportant, as long as the element is inserted. In other words,
> (define ls ‘(1 2 3 4))
> (insert! ls 5) ==> return value unimportant
> ls ==> (1 2 3 4 5)
Does this work? If not, can you write one that does?

(define (insert! ls val)
(if (null? ls)

 (set! ls (list val))

 (insert! (cdr ls) val)))
Nope; this should be automatic by now: set! does not change elements or structure of a list! As for glorify!, you might try returning partial answers like this:
(define (insert! ls val)

(cond ((null? ls) (list val))

(else (set-cdr! ls (insert! (cdr ls) val))

ls)))
(define ls ‘(1 2 3 4))
(insert! ls 5) ==> (1 2 3 4 5)
ls ==> (1 2 3 4 5)
This almost works. But what if ls is null?
(define ls ‘())
(insert! ls 3) ==> (3)
ls ==> ‘()
Why doesn’t this work? Think carefully. The answer lies in #3b.
5. Write a procedure, remove-first! which, given a list, removes the first element of the list destructively. You may assume that the list contains at least two elements. So,
> (define ls ‘(1 2 3 4))
> (remove-first! ls) ==> return value unimportant
> ls ==> (2 3 4)
And what if there’s only one element?
From 3 and 4, we know that we can’t change what ls points, and so we can’t do it the obvious way:
(define (remove-first! L)

(set! L (cdr L)))
This doesn’t work for reasons we mentioned in 2. Instead, our strategy will be to copy all the elements up one spot, and cut off the cons cell at the end of the list rather than the beginning:
(define (remove-first! L)

(cond ((null? (cdr (cdr L)))

 (set-car! L (cadr L))

 (set-cdr! L ‘()))

(else (set-car! L (cadr L))

(remove-first! (cdr L)))))
Note that having at least two elements in the list allows us to do (cdr (cdr ls)) in the base case. If there’s only one element, this wouldn’t work, and in fact there’s no general procedure that can remove the first element given any list. Consider:
(define ls ‘(1))
(remove-first! ls)
ls ==> ‘()
This means we’ll need to change what ls points to (from a cons cell to a null list), which we know we can’t do from within remove-first!.
6. Implement our old friend’s ruder cousin, (reverse! ls). It reverses a list using mutation.
Many ways to do this:
;; here’s a way using state
(define (reverse! ls)

(define (helper! prev rest)

(cond ((null? rest) prev)

(else (let ((rest-of-rest (cdr rest)))

(set-cdr! rest prev)

(helper! rest rest-of-rest)))))

(helper! ‘() ls))
;; this way is similar to the way we approached the old reverse
;; problem. We reverse! the rest of the list, and then attach the
;; first element to the last.
(define (reverse! ls)

(define (last ls)
 (cond ((null? ls) '())

 ((null? (cdr ls)) ls)
 (else (last (cdr ls)))))

(cond ((null? ls) ‘())

((null? (cdr ls)) ls)

(else (let ((rest-reversed (reverse! (cdr ls))))

(set-cdr! ls ‘())

(set-cdr! (last rest-reversed) ls)

rest-reversed))))
7. Implement (deep-map! proc deep-ls) that maps a proc over every element of a deep list, without allocating any new cons pairs. So,
(deep-map! square ‘(1 2 (3 (4 5) (6 (7 8 ())) 9))) ==>

‘(1 4 (9 (16 25) (36 (49 64 ())) 81))

(define (deep-map! proc ls)

(cond ((null? ls) ‘())

((not (pair? ls)) (proc ls))

(else (set-car! ls (deep-map! proc (car ls)))

 (set-cdr! ls (deep-map! proc (cdr ls)))

 ls)))
8. Implement (interleave! ls1 ls2) that takes in two lists and interleaves them without allocating new cons pairs.
(define (interleave! ls1 ls2)

(cond ((null? ls1) ls2)

((null? ls2) ls1)

(else (set-cdr! ls1 (interleave! ls2 (cdr ls1)))

ls1)))
Scheme2: The Environmentalists Strike Back
QUESTIONS
1. What’s the point of having that (list ‘*TABLE*) thing at the beginning of the-global-environment and the procedure environment? Can we do without it?
The *TABLE* entry in the beginning is the “sentinel” we referred to above. Without this, we won’t be able to insert an element into the-global-environment list, since it starts out as ‘() (consider again #4 in the previous section). This also allows the procedure-environment of global procedures to point to the entire global environment (the first entry, the *TABLE*), rather than just whatever is in the global environment when it was created (the first entry of the-global-environment at the moment). If there were no sentinels, this wouldn’t work:
(define pi 3.14)
(define (foo x) (bar x))
(define (bar x) (+ x x))
(foo 3)
If there’s no *TABLE*, then after pi is defined, we have:
((pi . 3.14))
as the-global-environment. This will also be foo’s procedure environment. After foo is defined, we have:
((foo . (procedure ...)) (pi . 3.14))
This will be bar’s procedure environment. But note that foo’s procedure environment – ((pi . 3.14)) – does NOT contain a binding for bar! Thus calling foo will fail.
But if instead, the procedure-environment of both foo and bar point to *TABLE*, which precedes all bindings, then their procedure-environment will be the same:
(*TABLE (bar . (procedure ...)) (foo . (procedure ...)) (pi . 3.14))
2. Take a look at the put procedure; it always adds a new binding to be beginning of the environment. For example, when I do this:
> (define x 20)
> (define x 40)
> x ==> ??
Then Scheme2 would create two bindings in the environment. More specifically, the global environment would look like (*TABLE* (x . 40) (x . 20)). What, then, would be the value of x? What in Scheme2’s code makes this happen?
When looking up a variable in the environment, assoc returns the first binding it sees.
3. This works:
> (‘(procedure (lambda(x) (* x x)) ‘()) 3) ==> 9
Why? What can we do to prevent this?
This is because (procedure (lambda(x) (* x x)) ‘()) happens to be a valid procedure value. This prevents it:
(define procedure-mark ‘(procedure))
(define (make-proc exp env)

(list procedure-mark exp env))
(define lambda-proc? (exp-checker procedure-mark))
Why? Note that the key lies in exp-checker’s use of eq? instead of equal?, and note that while any ‘procedure eq? any ‘procedure, not any ‘(procedure) eq? any ‘(procedure). It can only be that procedure-mark ‘eq? procedure-mark.
4. Implement the begin special form for Scheme-2.
Add this clause to eval-2’s cond:
((begin-exp? exp) (eval-sequence (cdr exp) env))
Chung Wu; CS61A, Spring 2004
Chung Wu; CS61A, Spring 2004

