PAGE
4

CS61A Notes 12 – Analyzing Evaluator (v1.0)
Improving the Metacircular Evaluator
Recall what mc-eval looks like:

(define (mc-eval exp env)

(cond ((self-evaluating? exp) ...)

((quoted? exp) ...)

((variable? exp) ...)

((assignment? exp) ...)

((if? exp) ...)

((lambda? exp) ...)

...

((application? exp) ...))))

Thus, whenever you type in a Scheme expression, the evaluator first analyzes what kind of expression it is (constant? if? lambda? etc.). Then, it executes or evaluates the expression in the desired way. This, however, is very wasteful. Suppose we have our favorite procedure again:

> (define sqr (lambda(x) (* x x)))

> (sqr 3)

> (sqr 4)

> (sqr 5)

Remember that, for every procedure call, we’re going to call mc-eval on the body of the compound procedure that we’re applying – in this case, sqr. When we do (sqr 3), mc-eval is first going to analyze what kind of expression the body – (* x x) – is; is it a constant? Quoted expression? Etc. It finds that it’s an application, and performs apply. But when we do (sqr 4), it does the same thing, and again for (sqr 5). Do we really need to check what kind of expression (* x x) is every time the procedure sqr is invoked?

Enter the analyzing evaluator. The idea is to separate analysis and execution; we could only run analysis once – when we define sqr, we could analyze it and find that (* x x) is an application – and execute many times without analyzing it repeatedly.
The meat of the analyzing evaluator is the procedure called analyze, which takes in a Scheme expression and returns a procedure that, when called with an environment, will evaluate that Scheme expression and return its value. The procedure returned by analyze is called an expression-procedure. Or,

analyze: Scheme expression ((lambda(env) evaluate expression in env)
For example, if the expression is self-evaluating, then its expression-procedure would just return the expression itself:
(define (analyze-self-evaluting exp) (lambda(env) exp))

The others aren’t so cryptic, so the book’s explanations should suffice. As a general rule, you do not want to have a call to analyze inside the body of the expression-procedure you return. This is because you’d like to analyze only once; if you have a call to analyze inside the expression-procedure, then every time you invoke the expression-procedure, you’re going to analyze again, saving nothing.

Things get trickier with procedure calls. Let’s take a look at what happens when we analyze a lambda:
(define (analyze-lambda exp)

(let ((vars (lambda-parameters exp))

(bproc (analyze-sequence (lambda-body exp))))

(lambda(env) (make-procedure vars bproc env)))

Recall that, before, without analysis, when we encounter a lambda, we just call make-procedure with its parameters, body and the current environment. Instead now, we return a procedure that, when called with an environment, will call make-procedure. Note also that we don’t just store the body of the lambda into the procedure anymore; instead we store the analyzed expression-procedure of the body into the procedure. This is the key in ensuring that we only analyze the body of a procedure once; hereafter, we can just invoke the body’s expression-procedure without having to analyze it ever again.

What do we do when we see a procedure call? Well,

(define (analyze-application exp)

(let ((fproc (analyze (operator exp)))

(aprocs (map analyze (operands exp))))

(lambda(env)

(execute-application (fproc env)

(map (lambda(aproc) (aproc env)) aprocs)))))

Again, we return a procedure that takes in an environment as an argument. Before that, we just analyze everything in the procedure call – both the procedure itself and its arguments. The body of the expression-procedure is a call to execute-application that actually executes the procedure call. execute-application is a procedure that takes in a procedure value and a list of arguments and applies the procedure to the list of arguments. The subtle thing to note is that execute-application takes in values – not expression- procedures! Therefore, before calling execute-application, we have to first call the operator and the arguments’ expression-procedures with the given environment in order to obtain their values.
How do we actually do the apply? Here’s a glimpse:

(define (execute-application proc args)

(cond ((primitive-procedure? proc)

 (apply-primitive-procedure proc args))

((compound-procedure? proc)

 ((procedure-body proc)

 (extend-environment (procedure-parameters proc)

 args

 (procedure-environment proc))))))

Again, remember that proc is a procedure value, and args is a list of values – not expression-procedures. Thus, execute-application does things very similarly to mc-apply. If proc is a primitive procedure – something like (primitive #[+]), etc. – then we’ll pass it down to underlying STk, as before. But if proc is a compound procedure, recall what we did when we encountered a lambda expression – we made an expression-procedure which, when invoked with an environment, will create a procedure with the lambda parameters, the analyzed lambda body, and its procedure environment. Thus, proc would look something like
(procedure (x) (lambda(env) ...) proc-env). The crucial thing is to realize that the body of the procedure has already been analyzed!

Recall that to apply a compound procedure, we evaluate the body of the procedure in its procedure environment extended with parameter-argument bindings. Well, the procedure-body is already an expression-procedure that will take in an environment and evaluate the body, so we just need to extend the procedure environment as we did before, and pass it as argument to the procedure-body of the procedure, which will evaluate the body in that environment.
A Hand-wavy Trace

If the above isn’t concrete enough for you, let’s try to run through a fairly simple example with a hand-wavy trace. In the following, I’m going to expand some of the procedure calls to make things less cryptic. It’s hand-wavy because I’m going to use the substitution model, which results in incorrect Scheme syntax. Ignore the problems this causes with, say, not quoting lists, etc. Just get a feel of what’s going on.
Legend:
e-a: execute-application

m-p: make-procedure

lookup: lookup-variable-value

(
((analyze (define sqr (lambda(x) (* x x)))) env)

(
A definition! Call analyze-definition. In the let, var will be bound to sqr, and vproc will be the result of calling analyze on the definition-value:

(
(analyze (lambda(x) (* x x))). A lambda expression! Call analyze-lambda. In the let, vars will be (x), and bproc will be the result of...

· (analyze (* x x)). An application! Call analyze-application, which will do:

(
(analyze *) – a variable!

(
 Return (lambda(env) (lookup * env))
(
(map analyze (x x))

(
Return list

((lambda(env) (lookup x env)) (lambda(env) (lookup x env)))

(
Return (lambda(env)

 (e-a ((lambda(env) (lookup * env)) env)

 (map (lambda(aproc) (aproc env))

 ((lambda(env) (lookup x env))

 (lambda(env) (lookup x env))))))

(
Return (lambda(env)

(make-procedure

 (x)

 (lambda(env)

 (e-a ((lambda(env) (lookup * env)) env)

 (map (lambda(aproc) (aproc env))

 ((lambda(env) (lookup x env))

 (lambda(env) (lookup x env))))))

 env))

(
Return (lambda(env)

(define-variable!

sqr

((lambda(env)

(make-procedure

 (x)

 (lambda(env)

 (e-a ((lambda(env) (lookup * env)) env)

 (map (lambda(aproc) (aproc env))

 ((lambda(env) (lookup x env))

 (lambda(env) (lookup x env))))))

 env))

 env)))

(
Actually calling the above with an environment, as you can see, will make a call to define-variable!, and will also call the second-level lambda with an environment. Calling the second-level lambda with an environment will call make-procedure, which creates a procedure as before. Thus, the net effect is to create a binding in the environment from the symbol sqr to the list:

(procedure

(x)

(lambda(env)

(e-a ((lambda(env) (lookup * env)) env)

 (map (lambda(aproc) (aproc env))

((lambda(env) (lookup x env))

 (lambda(env) (lookup x env))))))

Whatever-procedure-environment)

(
((analyze (sqr 3)) env)

(
analyze sees an application! It’s going to first call analyze on everything:

(
(analyze sqr) is a variable lookup

· Return (lambda(env) (lookup sqr env))
(
(map analyze (3))
· ((lambda(env) 3))

(
Return (lambda(env) (e-a ((lambda(env) (lookup sqr env)) env)

 (map (lambda(aproc) (aproc env))

 ((lambda(env) 3)))))

(
Now, call the above with env, which will result in a call to execute-application. Before that, we evaluate the arguments to execute-application:

(
((lambda(env) (lookup sqr env)) env) looks up what sqr is bound to in the environment.

· This just returns that long procedure list at the top of this page.

(
(map (lambda(aproc) (aproc env)) ((lambda(env) 3)))
· Returns (3)
(
Now we’re ready to call execute-application. The proc will be the long procedure thing at the top of the page, and args is the list (3). proc is obviously a compound procedure, so we’ll call the procedure-body’s expression-procedure with its procedure environment extended with parameter-argument bindings:

((lambda(env)

(e-a ((lambda(env) (lookup * env)) env)

 (map (lambda(aproc) (aproc env))

 ((lambda(env) (lookup x env))

 (lambda(env) (lookup x env))))))

 Extended-environment).
This will then call execute-application inside the lambda. Before that, of course, we evaluate the arguments.

(
((lambda(env) (lookup * env)) env)

(
This gives us primitive procedure (primitive #[*])

(
(map (lambda(aproc) (aproc env))

((lambda(env) (lookup x env)) (lambda(env) (lookup x env))))

(
(3 3)

(
Call execute-application with proc (primitive #[*]) and args (3 3)

(
proc is a primitive procedure, so magically apply it

(
Returns 9

(
Returns 9
· Returns 9

(
Returns 9
(
Returns 9
Once you gain some intuition of how this works, it’s really best to trust that it works and not trace through it like this every time (as you can see, it gets quite ugly and tedious). Just keep what’s an expression, expression-procedure or value straight and deal with them accordingly.
Chung Wu; CS61A, Spring 2004

