CS61A Notes 15 – Logic Is What Logic Declares Logic To Be [Solutions v1.0]
Lists Again (and again, and again, and again, and again…  Someone changed the Matrix!)

QUESTIONS

1. Write a rule for car of list.  For example, (car (1 2 3 4) ?x) would have ?x bound to 1.
(rule (car (?car . ?cdr) ?car))
2. Write a rule for cdr of list.  For example, (cdr (1 2 3) ?y) would have ?y bound to (2 3).
(rule (cdr (?car . ?cdr) ?cdr))
3. Using the above, write a query that would bind ?x to the car of my-list.  Write another query that would bind ?y to the cdr of my-list.
The temptation is to write (car my-list ?x) or (cdr my-list ?y).  This doesn’t work!  There is no entry in the database whose first element is “car” and whose second element is the word “my-list”.  If you did that, you’re thinking in the old Scheme way – that some “evaluator” will see my-list as a symbol and substitute in (1 2 3 4).  This will not happen, since my-list isn’t a variable!  What you have to do is this:
(and (my-list ?ls) (car ?ls ?x))
First, we match ?ls to be (1 2 3 4), and then match ?x to be 1.
4. Define our old friend, member, so that (member 4 (1 2 3 4 5)) would be satisfied, and (member 3 (4 5 6)) would not, and (member 3 (1 2 (3 4) 5)) would not.

(rule (member ?item (?item . ?cdr)))


(rule (member ?item (?car . ?cdr)) (member ?item ?cdr))
5. Define its cousin, deep-member, so that (deep-member 3 (1 2 (3 4) 5)) would be satisfied as well.

(rule (deep-member ?item (?item . ?cdr)))


(rule (deep-member ?item (?car . ?cdr)) (deep-member ?item ?car))


(rule (deep-member ?item (?car . ?cdr)) (deep-member ?item ?cdr))


Note how ?item can either be in ?car or ?cdr, so we need three rules.
6. Define another old friend, reverse, so that (reverse (1 2 3) (3 2 1)) would be satisfied.
(rule (reverse () ()))


(rule (reverse (?car . ?cdr) ?reversed-ls)


      (and (reverse ?cdr ?r-cdr) 





  (append ?r-cdr (?car) ?reversed-ls)))
7. (HARD!) Define its cousin, deep-reverse, so that 



(deep-reverse (1 2 (3 4) 5) (5 (4 3) 2 1)) would be satisfied.

(rule (deep-reverse ?item ?item) (lisp-value atom? ?item))

(rule (deep-reverse () ()))

(rule (deep-reverse (?car . ?cdr) ?dr-ls)


   (and (deep-reverse ?car ?r-car)


   
     (deep-reverse ?cdr ?r-cdr)


   
     (append ?r-cdr (?r-car) ?dr-ls)))
We need the first rule because recall that a “deep-list” could be an atom, and that the third rule does not check if the ?car is an atom or not when it recurses on it.
8. Write the rule remove so that (remove 3 (1 2 3 4 3 2) ?what) binds ?what to (1 2 4 2) – the list with 3 removed.

(rule (remove ?item () ()))

(rule (remove ?item (?item . ?cdr) ?result) 



   (remove ?item ?cdr ?result))

(rule (remove ?item (?car . ?cdr) (?car . ?r-cdr))

      (and (not (same ?item ?car))



     (remove ?item ?cdr ?r-cdr)))
9. Write the rule interleave so that (interleave (1 2 3) (a b c d) ?what) would bind ?what to (1 a 2 b 3 c d).
(rule (interleave ?ls () ?ls))

(rule (interleave () ?ls ?ls))

(rule (interleave (?car . ?cdr) ?ls2 (?car . ?r-cdr))


   (interleave ?ls2 ?cdr ?r-cdr))
10. Consider this, not very interesting rule: !(listify ?x (?x)) .  So if we do (listify 3 ?what), ?what would be bound to (3).

Define a rule map with syntax (map procedure list result), so that (map listify (1 2 3) ((1) (2) (3))) would be satisfied, as would (map reverse ((1 2) (3 4 5)) ((2 1) (5 4 3))).  In fact, we should be able to do something cool like (map ?what (1 2 3) ((1) (2) (3))) and have ?what bound to the word “listify”.  Assume the “procedure” we pass into map are of the form (procedure-name argument result).


(rule (map ?proc () ()))


(rule (map ?proc (?car . ?cdr) (?new-car . ?new-cdr))


      (and (?proc ?car ?new-car)


  

        (map ?proc ?cdr ?new-cdr)))
11. We can let predicates have the form (predicate-name argument true/false).  Define a rule even so that (even 3) is not be satisfied, and (even 4) is.
(rule (even ?x) (lisp-value even? ?x))
12. The above is a way to make predicates.  And once we have predicates, we can – and will , of course –write a filter rule with the syntax (filter predicate list result) so that (filter even (1 2 3 4 5 6) (2 4 6)) would be satisfied, and querying (filter ?what (10 11 12 13) (10 12)) would bind ?what to the word “even”.

(rule (filter ?pred () ()))


(rule (filter ?pred (?car . ?cdr) (?car . ?new-cdr))


      (and (?pred ?car) 





  (filter ?pred ?cdr ?new-cdr)))


(rule (filter ?pred (?car . ?cdr) ?new-ls)


      (and (not (?pred ?car))






  (filter ?pred ?cdr ?new-ls)))
Number Theory (The Bizarre Way)
QUESTIONS

1. Write the rule subtract using the same syntax as sum.  Assume that the first argument will always be greater than the second (since we don’t support negative numbers with our system!)

(rule (subtract ?x 0 ?x)) ;; x – 0 = x

(rule (subtract ?x (s ?y) ?z)  ;; x-y=z ( x-(y-1)=(z+1)



(subtract ?x ?y (s ?z)))
2. Write the rule product.
(rule (product 0 ?x 0)) ;; 0 * x = 0


(rule (product (s ?x) ?y ?z) ;; x*y=z <=> (x-1)*y + y = z




(and (product ?x ?y ?i) 






  (sum ?i ?y ?z))))
3. Define the rule exp (for exponent, of course), with the first argument the base and second the power, so that (exp (s (s 0)) (s (s 0)) ?what) would bind ?what to (s (s (s (s 0)))).
(rule (exp ?x 0 (s 0))) ;; x^0=1

(rule (exp ?base (s ?pow) ?z) ;; x^y=z <=> x^(y-1) * x = z



(and (exp ?base ?pow ?i) 




  (product ?base ?i ?z)))
4. Write the rule factorial, so that (factorial (s (s (s 0))) ?what) would bind ?what to (s (s (s (s (s (s 0)))))).
(rule (factorial 0 (s 0))) ; 0!=1


(rule (factorial (s ?x) ?y) ; x!=y <=> (x-1)! * x = y




(and (factorial ?x ?i) 





  (product ?i (s ?x) ?y)))
5. Write the rule max with syntax (max number1 number2 the-bigger-number) so that (max (s 0) (s (s 0)) ?what) would bind ?what to (s (s 0)).
(rule (max ?x 0 ?x))

(rule (max 0 ?x ?x))

(rule (max (s ?x) (s ?y) (s ?z))




(max ?x ?y ?z))
6. Write the rule appearances that counts how many times something appears in a list.  For example, (appearances 3 (1 2 3 3 2 3 3) ?what) would bind ?what to (s (s (s (s 0)))).
(rule (appearances ?item () 0))

(rule (appearances ?item (?item . ?cdr) (s ?count))

      (appearances ?item ?cdr ?count))

(rule (appearances ?item (?car . ?cdr) ?count)

      (and (not (same ?car ?item))

     

  (appearances ?item ?cdr ?count)))
7. Note that we can represent negative numbers by putting s to the right.  For example, negative two would be ((0 s) s).  Write *-1 so that (*-1 ((0 s) s) ?what) binds ?what to (s (s 0)) and (*-1 (s (s 0)) ?what) binds ?what to ((0 s) s).

(rule (*-1 0 0)) ;; -1 * 0 = 0

(rule (*-1 (s ?x) (?y s)) ;; -1*x=y <=> -1*(x-1)=y+1



(*-1 ?x ?y))

(rule (*-1 (?x s) (s ?y)) ;; -1*x=y <=> -1*(x+1)=y-1



(*-1 ?x ?y))
Note there are three cases: the first argument is 0, is a positive number, or is a negative number.
8. Write rules sum2 and subtract2 that can take in negative numbers.

Note that there are five general cases for sum2: one of the numbers is 0, the first number is positive and the second negative, the first number is negative and the second positive, both positive, and both negative.

The case with 0 is trivial:


(rule (sum2 0 ?x ?x))
(rule (sum2 ?x 0 ?x))
In the case of both positive, we can just use the sum that we wrote before.  


(rule (sum2 (s ?x) (s ?y) ?z) 




(sum (s ?x) (s ?y) ?z)) ; use old sum

If first is negative and second is positive, note that

-x + y = z <==> (-x+1) + (y-1) = z



(rule (sum2 (?x s) (s ?y) ?z) 





(sum2 ?x ?y ?z))
If the first is positive and the second is negative, we take advantage of addition’s commutative property, and use the above.
x + -y = z <==> -y + x = z


(rule (sum2 (s ?x) (?y s) ?z)

   (sum2 (?y s) (s ?x) ?z)) ; sum is commutative!


If both are negative, note that:


-x + -y = -1 * (x + y)

(rule (sum2 (?x s) (?y s) ?z)


   (and (*-1 (?x s) ?pos-x)




     (*-1 (?y s) ?pos-y)


     

  (sum2 ?pos-x ?pos-y ?pos-z)


  


  (*-1 ?z ?pos-z)))

Since our sum2 can deal with negative numbers now, note that


x – y = x + -y


(rule (subtract2 ?x ?y ?z)

      (and (*-1 ?y ?-1*y)




     (sum2 ?x ?-1*y ?z)))
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