QUESTIONS: Draw environment diagrams for the following:

Your best friend here is going to be envdraw. SSH into your account @ star, and then type “envdraw” at the shell. A special version of STk will run. Start typing away, and it’ll draw the environment diagram for you!

Assigning Things to Things and Stuff (and other things)

QUESTIONS

1. Personally – and don’t let this leave the room – I think set! is useless. I mean, why do set!, when we can always just redefine a variable using a define statement? Instead of doing (set! x 3), why don’t we just do (define x 3) again? I propose the following alternative implementation of counter, similar to the one in class:

 The Old Way
 (define count
 (let ((current 0))
 (lambda ()
 (set! current (+ 1 current))
 current)))

 Hamilton’s Brilliant New Way
 (define count
 (let ((current 0))
 (lambda ()
 (define current (+ current 1))
 current)))

 (count) ==> 1
 (count) ==> 2

 How dumb am I? What happens when I use my brilliant new implementation?

 My “brilliant” implementation will always return 1. This is because, every time (count) is called, I redefine current to be (+ current 1), but I don’t remember that for the next call. That is, after I exit out of the procedure call, the new binding for current is lost.

2. Consider these definitions:
 (define x 3)
 (define (z) (set! x 5) x)
 What would (list (z) x) return?

 Depends! If we evaluate left to right, then it returns (5 5). If we evaluate right to left, it returns (5 3). Now do you believe me when I say imperative programming is more dangerous!

3. Define a procedure fib so that, every time it is called, it returns the next Fibonacci number, starting from 1:
 (fib) => 1; (fib) => 2; (fib) => 3; (fib) => 5; (fib) => 8, etc.

 (define fib
 (let ((a 0) (b 1))
 (lambda ()
 (let ((old-a a))
 (set! a b)
 (set! b (+ a old-a))
 b)))))
4. (SICP ex. 3.8) Keeping number 2 in mind, define a procedure \(f \) so that, given the procedure call
\[
(+ (f 0) (f 1))
\]
If \(STk \) evaluates from left to right, it returns 0, and if \(STk \) evaluates from right to left, it returns 1.

\[
\text{(define } f \text{)}
\text{(let ((first-call #t))}
\text{(lambda (x})
\text{(cond (first-call (set! first-call #f) x)}
\text{(else 0))}))
\]