Today

- Quick review of Iterative Improvement.
- Defining functions that call themselves.
 - Sometimes more than once.

Recap: Newton’s Method

Incredibly powerful, but does not always work!
Certain conditions need to be satisfied: for example, the function needs to be differentiable.

The method can fail in many ways, including:
1. Infinite loop among a set of guesses. (Try \(f(x) = x^3 - 2x + 2 \).)
2. Guesses may never fall within the tolerance for approximate equality.
3. Guesses converge to the answer very slowly.

Recap: Newton’s Method

Iterative Improvement (with one fix)

We can add a limit on the number of iterations.

```python
def iter_improve(update, isclose, guess=1, max_iter=5000):
    counter = 1
    while not isclose(guess) and counter <= max_iter:
        guess = update(guess)
        counter += 1
    return guess
```
Practice: Newton’s Method

Using `find_root`, write a function `intersection(f, g)` which takes two functions, `f` and `g`, and finds a point at which the two are equal.

```python
def intersection(f, g):
    return find_root(lambda x: f(x) - g(x))
```

Computing Factorial

The factorial of a positive integer `n` is:

\[
 n! = \begin{cases}
 1, & n = 0 \text{ or } n = 1 \\
 n \cdot (n - 1) \cdot \ldots \cdot 1, & n > 1
\end{cases}
\]

```python
def fact(n):
    if n == 1 or n == 0:
        return 1
    total = 1
    while n >= 1:
        total, n = total * n, n - 1
    return total
```

(We generalized our definition). Can we do that with our code?
Computing Factorial

\[n! = \begin{cases} 1, & n = 0 \text{ or } n = 1 \\ n \times (n-1)! , & n > 1 \end{cases} \]

```
def fact(n):
    if n == 1 or n == 0:
        return 1
    return n * fact(n - 1)
```

How can `fact` be defined by calling `fact`?!?!

Recursive Functions

A function is a **recursive function** if the body calls the function itself, either directly or indirectly.

Recursive functions typically have 2 main pieces:
1. Recursive case(s), where the function calls itself.
2. Base case(s), where the function does NOT recursively call itself and instead returns a direct answer. This is what ensures that the recursion will eventually stop.

```
def fact(n):
    if n == 1 or n == 0:
        return 1
    return n * fact(n - 1)
```

Practice: Recursion

How would I rewrite the summation function from last week to use recursion?

```
def summation(n, term):
    if n == 0:
        return 0
    return term(n) + summation(n - 1, term)
```
What does the following function calculate?

```python
def fun(a, b):
    if b == 0:
        return 0
    elif b % 2 == 0:
        return fun(a + a, b / 2)
    return fun(a, b – 1) + a
```

It's multiplying a times b!

Using recursion, write the function `log(b, x)` which finds $\log_b(x)$, assuming x is some power of b.

```python
def log(b, x):
    if x == 1:
        return 0
    return 1 + log(b, x / b)
```

You can have a function defined in terms of itself using more than one recursive call. This is called tree recursion.

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    return fib(n – 1) + fib(n – 2)
```

ANNOUNCEMENTS

- Bug-Submit is now available!
- Project 1 is due Friday
- Homework 3 is due Friday

You can have a function defined in terms of itself using more than one recursive call. This is called tree recursion.

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    return fib(n – 1) + fib(n – 2)
```
So why is it called tree recursion?

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    return fib(n – 1) + fib(n – 2)
```

def paths(x, y):
 if x == 0 or y == 0:
 return 1
 return paths(x – 1, y) + paths(x, y – 1)

```
def directions(x, y):
    def dir_helper(x, y, so_far):
        if x == 0 and y == 0:
            print(so_far)
        elif y > 0:
            dir_helper(x, y – 1, so_far + " UP")
        elif x > 0:
            dir_helper(x-1, y, so_far + " RIGHT")
    dir_helper(x, y, ")
```

CONCLUSION

- Recursion is a way for functions to be defined using themselves.
- Recursive functions have two parts:
 - Recursive case(s), where the function calls itself.
 - Base case(s), where the function does not call itself (stopping the recursion).
- Tree recursion is used by functions that make more than one recursive call (at the same time) in the definition.