Soap bubble screen is 'the world's thinnest display'

The team says the display is the world's thinnest transparent screen

TODAY

• Review: Immutable Trees
• Binary Trees and Binary Search Trees
• Extra: Tuples versus IRLists
Review: Hierarchical Data

Often, we find that information is nicely organized into hierarchies.

Example: Writing!
REVIEW: TREES

A *tree* data structure traditionally has two parts:

1. A *datum*: Information stored at the top.
2. Some *children*: Trees that appear below this tree.

![Diagram of a tree data structure with a datum at the top and children below.]

Datum

Children
REVIEW: TREES

Notice that trees are also *recursively defined*. A tree is made from other trees – these trees are its *subtrees*.
Review: Trees

A is a parent to B and C

B and C are children of A
REVIEW: TREES

Root

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

Leaves
Review: Immutable Trees

```make_itree(1,  
    (make_itree(2),  
        make_itree(3,  
            (make_itree(4),  
                make_itree(5)),  
            make_itree(6,  
                (make_itree(7),))))
```

Tuple of children (each is an ITree!)

Root

No children

Only one child
Review: Immutable Trees

`itree_datum(fir)` is 1

`itree_children(fir)` is the tuple

```
(2, 3, 6)
```

A group of trees is called a *forest*.

This is not what is printed! The expression *evaluates* to a tuple of ITrees, which are the children of `fir`.
def make_itree(datum, children=()):
 return (datum, children)

def itree_datum(t):
 return t[0]

def itree_children(t):
 return t[1]
Write the function `itree_prod`, which takes an ITree of numbers and returns the product of all the numbers in the ITree.

```python
>>> t = make_itree(1, (make_itree(2),
          make_itree(3),
          make_itree(4)))
>>> itree_prod(t)
24
```
Example: Operating on ITrees

Idea: Split the problem into two different parts: one that handles a single tree and one that handles a forest.

```python
def itree_prod(t):
    return itree_datum(t) * forest_prod(itree_children(t))
```

This function returns the product of numbers in an ITree:

- **Datum, multiplied by...**
- **... the product of all the numbers in all the ITrees in the forest.**

```python
def forest_prod(f):
    if len(f) == 0:
        return 1
    return itree_prod(f[0]) * forest_prod(f[1:])
```

This function returns the product of all the numbers in all the ITrees in the forest:

- **Product of numbers in the first ITree, multiplied by...**
- **... the product of all the numbers in all the other ITrees of the forest.**
EXAMPLE: OPERATING ON ITREES

Idea: Split the problem into two different parts: one that handles a single tree and one that handles a forest.

```
def itree_prod(t):
    return itree_datum(t) * forest_prod(itree_children(t))
```

```
def forest_prod(f):
    if len(f) == 0:
        return 1
    return itree_prod(f[0]) * forest_prod(f[1:])
```

Not a data abstraction violation. We know that f is a tuple of lTrees.
Example: Operating on ITrees

Ideas: Split the problem into two different parts: one that handles a single tree and one that handles a forest.

```python
def itree_prod(t):
    return itree_datum(t) * forest_prod(itree_children(t))

def forest_prod(f):
    if len(f) == 0:
        return 1
    return itree_prod(f[0]) * forest_prod(f[1:])
```

This is called **mutual recursion** because it involves two functions recursively calling each other!
MUTUAL RECURSION

To find the product of the whole ITtree in \texttt{itree_prod}, we need to apply \texttt{itree_prod} itself to the smaller subtrees that are the children of the provided itree. \texttt{forest_prod} does this for us.
EXAMPLE: OPERATING ON ITREES

An alternate definition for itree_prod does not need two separate and smaller functions:

```python
from operator import mul
def itree_prod(t):
    return itree_datum(t) * \
    reduce(mul,  
    map(itree_prod,  
    itree_children(t)),  
    1)
```

Applies itree_prod recursively on the children.

Multiplies all the results of applying itree_prod on the children.
Practice: Operating on ITrees

Write a function `scale_itree` that takes an ITree of numbers and a scaling factor, and returns a new ITree that results from scaling each number in the original ITree.

\[
\text{scale\textunderscore itree}\left(\begin{array}{c}
1 \\
2 & 3 & 6 \\
4 & 5 & 7
\end{array}\right), \ 2 = \left(\begin{array}{c}
2 \\
4 & 6 & 12 \\
8 & 10 & 14
\end{array}\right)
\]
PRACTICE: OPERATING ON I TREES

```python
def scale_itree(itree, factor):
    return make_itree(___________________________,
                      scale_forest(_____________________,
                                      ______))

def scale_forest(forest, factor):
    results = ()
    for itree in forest:
        results = results + ____________________________
    return results
```
def scale_itree(itree, factor):
 return make_itree(itree_datum(itree) * factor,
 scale_forest(itree_children(itree),
 factor))

def scale_forest(forest, factor):
 results = ()
 for itree in forest:
 results = results + scale_itree(itree, factor)
 return results
Practice: Operating on ITrees

Alternative solution:

```python
def scale_itree(itree, factor):
    return make_itree(itree_datum(itree) * factor,
                       scale_forest(itree_children(itree),
                       factor))

def scale_forest(forest, factor):
    if len(forest) == 0:
        return ()
    return (scale_itree(forest[0], factor),) + \
            scale_forest(forest[1:], factor)
```

Tuple of one tree
def scale_itree(itree, factor):
 return make_itree(generate_node(factor),
 tuple(map(transform, itree)))
def scale_itree(itree, factor):
 return make_itree(itree_datum(itree) * factor,
 tuple(map(scale_itree, itree_children(itree)).GetAsync())
Practice: Operating on ITrees

Write a function `count_leaves` that counts the number of leaves in the ITree provided.

```
count_leaves = 4
```
def count_leaves(itree):
 if ________________:
 return 1
 return cl_forest(_______________________)

def cl_forest(f):
 if len(f) == 0:
 return _
 return _________________________________
def count_leaves(itree):
 if is_leaf(itree):
 return 1
 return cl_forest(itree_children(itree))

def cl_forest(f):
 if len(f) == 0:
 return 0
 return count_leaves(f[0]) + cl_forest(f[1:])

def is_leaf(itree):
 return len(itree_children(itree)) == 0
def count_leaves(itree):
 if ______________:
 return 1
 return reduce(______,
 map(_____________,
 ________________________),
 _)
def count_leaves(itree):
 if is_leaf(itree):
 return 1
 return reduce(add,
 map(count_leaves,
 itree_children(itree)),
 0)
ANNOUNCEMENTS

• Homework 6 is due tomorrow, **July 10**.
 – Starting with the next homework, we will mark questions as **core** and **reinforcement**.
 – The **core** questions are ones that we suggest you work on to understand the idea better.
 – The **reinforcement** questions are extra problems that you can practice with, but are not as critical.

• Project 2 is due on Friday, **July 13**.

• Homework 0 for the staff is now available.
ANNOUNCEMENTS

• Midterm 1 is **tonight**.
 – *Where?* 2050 VLSB.
 – *When?* 7PM to 9PM.
• Closed book and closed electronic devices.
• One 8.5” x 11” ‘cheat sheet’ allowed.
• Group portion is 15 minutes long.
• Post-midterm potluck on Wednesday, **July 11** in the **Wozniak Lounge** from **6:30pm to 10pm**.
 – Bring food, drinks and board games!
 – Drop by if and when you can.
ANNOUNCEMENTS

http://berkeley.edu/map/maps/ABCD345.html
Should I Have A Cookie?

Do You Deserve A Cookie?

Yes!

BUT... AM I Lookin' Chunky, Lately?

No!

A Little

OK... One Cookie, Then

Cookie

No!

A Little

OK... One Cookie, Then

Cookie

Cookie

No!

Might Question. These Cookies are Going Stale... Gotta Finish Em Up.

Might Question. These Cookies are Going Stale... Gotta Finish Em Up.

No Cookie For Me, Then

Solution! I'll Just Eat 50% of the Cookie

So? O Cookie

But Now I Can't Shake This Funk. I Wanna Cookie

So? O Cookie

But I Can't Just Leave The Rest Out... 'Cause... Ants... Right?

But I Can't Just Leave The Rest Out... 'Cause... Ants... Right?

Cookie

Cookie

Cookie

Cookie
Problem Solving: Searching

Searching is a problem that shows up frequently in many different (and daily!) settings.

Problem: We have a collection of data and we need to find a certain datum.

Examples:
- Searching for a person in a phone book.
- Searching for a webpage on the Internet.

... and so on.
PROBLEM SOLVING: SEARCHING

Write a predicate function `has_num` that determines if a number is in a tuple of numbers.

def has_num(tup, num_to_find):
 for item in tup:
 if __________:
 return ____
 return _____
PROBLEM SOLVING: SEARCHING

Write a predicate function has_num that determines if a number is in a tuple of numbers.

```python
def has_num(tup, num_to_find):
    for item in tup:
        if item == num:
            return True
    return False
```
PROBLEM SOLVING: SEARCHING

How does the running time of has_item scale as n, the length of the tuple, scales?

Can we do better?
Trees in Real Life: Binary Trees

Trees where each node has at most two children are known as **binary trees**.
Trees in Real Life: Binary Search Trees

Binary search trees are binary trees where all of the items to the *left* of a node are *smaller*, and the items to the *right* are *larger*.

Why the term “*search* trees”? They speed up the search for an item in a sequence.
TREES IN REAL LIFE: BINARY SEARCH TREES

Let us try to find 4 in this binary search tree:

It could be anywhere here.
TREES IN REAL LIFE: BINARY SEARCH TREES

Let us try to find 4 in this binary search tree:

It could be anywhere here.

Discard this half of the data. It can’t be here! They’re too big.
Trees in Real Life: Binary Search Trees

Let us try to find 4 in this binary search tree:

This node contains 4.

It is present in the BST. 😊
Trees in Real Life: Binary Search Trees

Let us try to find 14 in this binary search tree:

It could be anywhere here.
TREES IN REAL LIFE: BINARY SEARCH TREES

Let us try to find 14 in this binary search tree:

Discard this half of the data. It can’t be here! They’re too small.

It could be anywhere here.
Trees in Real Life: Binary Search Trees

Let us try to find 14 in this binary search tree:
TREES IN REAL LIFE: BINARY SEARCH TREES

Let us try to find 14 in this binary search tree:
TREES IN REAL LIFE: BINARY SEARCH TREES

Let us try to find 11 in this binary search tree:

It could be anywhere here.
TREES IN REAL LIFE: BINARY SEARCH TREES

Let us try to find 11 in this binary search tree:

Discard this half of the data. It can’t be here! They’re too small.

It could be anywhere here.
TREES IN REAL LIFE: BINARY SEARCH TREES

Let us try to find 11 in this binary search tree:
Trees in Real Life: Binary Search Trees

Let us try to find 11 in this binary search tree:
TREES IN REAL LIFE: BINARY SEARCH TREES

Two important things when searching for an item in a binary search tree (BST):

1. As we go down the tree, from one level to another, from parent to child, we discard approximately half the data each time.
2. In the worst case, we go down all the way to the leaves.
The **height** of a tree is the length of the *longest path* from the root to any leaf.

If there are n nodes in a binary search tree, and if the binary search tree is *balanced*, then the height of the tree is approximately $\log_2 n$.

Approximately as many nodes on the left of any node as there are on the right of that node.
LOGARITHMIC ALGORITHM

Why approximately $\log_2 n$?
LOGARITHMIC ALGORITHM

Why approximately $\log_2 n$?

For a tree of height h (or $h + 1$ levels), the total number of nodes is

$$1 + 2 + 4 + 8 + \ldots + 2^h = n$$

or, $2^{h+1} - 1 = n$

or, $h \approx \log_2(n)$
LOGARITHMIC ALGORITHM

Why approximately $\log_2 n$?

Alternatively, notice that when we go *down one level*, we are discarding *approximately half* the data.
In the worst case, we go down to the leaves, visiting each level of nodes once. There are approximately $\log_2 n$ levels. The runtime to find an item in a binary search tree (BST) with n nodes is $O(\log n)$.

Exponentially faster than $O(n)$!
empty_bst = None
def make_bst(datum, left=empty_bst, right=empty_bst):
 return (left, datum, right)

def bst_datum(b):
 return b[1]
def bst_left(b):
 return b[0]
def bst_right(b):
 return b[2]
bst_is_leaf(b) returns True if the BST is a leaf:

def bst_is_leaf(b):
 return bst_left(b) == empty_bst and bst_right(b) == empty_bst
def has_num(b, num):
 if b == empty_bst:
 return False
 elif bst_datum(b) == item:
 return ____
 elif bst_datum(b) > item:
 return has_num(_____________,
 num)
 return has_num(_____________,
 num)
def has_num(b, num):
 if b == empty_bst:
 return False
 elif bst_datum(b) == item:
 return True
 elif bst_datum(b) > item:
 return has_num(bst_left(b), num)
 return has_num(bst_right(b), num)
CONCLUSION

• ITrees are useful for representing general tree-structures.

• Binary search trees allow us to search through data faster.

• **Preview:** Object-oriented programming: a brand new paradigm.
GOOD LUCK TONIGHT!

http://www.whosawesome.com/images/awesome.jpg
EXTRA: TUPLES VERSUS IRLISTS

Tuples and IRLists are two different ways of representing *lists of items*: they are two different data structures, each with their own advantages and disadvantages.

You will compare them further in CS61B, but here is a preview.
Extra: Tuples versus IRLists

IRLists are recursively defined, tuples are not.

This gives IRLists an advantage when you want to perform a naturally recursive task, such as mapping a function on a sequence.
EXTRA: TUPLES VERSUS IRLISTS

Which of the following methods is better?

def map_irlist(fn, irl):
 return make_irlist(fn(irlist_first(irl)),
 map_irlist(fn,
 irlist_rest(irl)))

def map_tuple(fn, tup):
 results = ()
 for item in tup:
 results = results + (fn(item),)
 return results
EXTRA: TUPLES VERSUS IRLISTS

map_irlist is better than map_tuple.

map_tuple creates and discards temporary tuples, since *tuples are immutable.*

map_irlist “tacks on” new items to the front of an existing (and growing) IRList.
EXTRA: TUPLES VERSUS IRLISTS

Tuples are unchanging sequences of data, which gives them an advantage when all you want to do is grab information from a sequence.
EXTRA: TUPLES VERSUS IRLists

Which of the following methods is better?

def getitem_tuple(tup, pos):
 return tup[pos]

def getitem_irlist(irl, pos):
 if pos == 0:
 return irlist_first(irl)
 return getitem_irlist(irlist_rest(irl), pos-1)
Extra: Tuples versus IRLists

getitem_tuple is better thangetitem_irlist.

Indexing into a tuple takes *(on average)* constant time, but indexing into an IRList takes linear time.