61A LECTURE 4 – ENVIRONMENTS 2

Steven Tang and Eric Tzeng
June 27, 2013

Announcements
- Homework 1 is due tonight, by 11:59pm!
- Make sure you leave yourself some time to figure out how submission works!
- Homework 2 is out, due Monday by 11:59
- And expect Homework 3 released sometime this weekend…
- Work on the project!

Congratulations!
- You’ve almost made it through your first week of 61A!
- Just one more day to go!

Higher-Order Functions
Functions are first-class: they can be manipulated as values in Python

Higher-order function: a function that takes a function as an argument value or returns a function as a return value

Higher order functions:
- Express general methods of computation
- Remove repetition from programs
- Separate concerns among functions

First, some review…
Draw this environment diagram:

```python
x = 3
def of_duty():
    return x + 1
def me_maybe(x):
    return of_duty() * x
me_maybe(5)
```

Remember…
- We started off with the idea of having a single mapping:

```
x ----> 1
y ----> 2
z ----> 3
```
- But then functions screwed everything up.
Remember...
- Then we used environment diagrams (v0.1)...
- ...but even the almighty environment diagram isn't good enough (yet)

Functions screw everything up again!
- More specifically, higher-order functions!
- Old model is inadequate

Environments and higher-order functions
- Higher-order function: a function that takes a function as an argument value or returns a function as a return value
 - Functions as arguments:
 - The environment model we learned already handles that!
 - We'll discuss an example today
 - Functions as return values:
 - We need to extend our model a little
 - Change: functions need to know where they were defined
 - Most things stay the same

Functions as arguments
- Demo: http://goo.gl/RCB1w

Break!

Environments for non-nested functions
- The environment during a call to a non-nested function consists of the newly created local frame and the global frame.
 - "x" is not found
What changes with nested functions?

- This is the most important slide of the lecture
 - **Before:**
 - The environment during a function call consists of the new local frame and the global frame
 - Check the local frame
 - If not there, check the global frame
 - **Now:**
 - The environment during a function call consists of the new local frame and the environment in which the function was defined
 - Check the local frame
 - If not there, check the rest of the environment

The structure of environments

A frame extends the environment that begins with its parent

- A three-frame environment
- A two-frame environment
- The global environment: the environment with only the global frame

How to draw an environment diagram

When defining a function:

Create a function value with signature `<name>(<formal parameters>)`

For nested definitions, label the parent as the first frame of the current environment

Bind `<name>` to the function value in the first frame of the current environment

When calling a function:

1. Add a local frame labeled with the `<name>` of the function
2. If the function has a parent label, copy it to this frame
3. Bind the `<formal parameters>` to the arguments in this frame
4. Execute the body of the function in the environment that starts with this frame

Example: function composition

- You may be familiar with function composition from your math classes...
 \[h = f \circ g \]
 \[h(x) = f(g(x)) \]

- Code example!

Env. diagrams for nested functions

Every user-defined function has a parent frame
The parent frame of a function is the frame in which it was defined
Every local frame has a parent frame
The parent of a local frame is the parent of the function called

Environment for function composition

Return value of `make_adder` is an argument to `compose3`
Closing remarks…

- We basically only changed one thing: functions now keep an additional bit of information
- With this, your environment model is now complete!
- Practice makes perfect
- Remember it well – if you ever can’t figure out why a variable has a certain value, draw the diagram!