61A LECTURE 7 – DATA ABSTRACTION

Steven Tang and Eric Tzeng

July 3, 2013
Announcements

• Trends project released later today. Due in ~2 weeks
• Extra midterm office hours Sunday, from noon to 6pm in 310 Soda
• Come relax at the potluck this Friday! 6-8pm at the Wozniak Lounge, 4th floor Soda.
Fibonacci sequence

- The Fibonacci sequence is defined as

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    return fib(n - 1) + fib(n - 2)
```
Tree recursion

Executing the body of a function may entail more than one recursive call to that function
This is called tree recursion
Trace demo
Tracing the Order of Calls

We can use a higher-order function to see the order in which calls are made and complete

def trace1(fn):
 """Return a function equivalent to fn that also prints trace output."""
 def traced(x):
 print('Calling', fn, '(', x, ')')
 res = fn(x)
 print('Got', res, 'from', fn, '(', x, ')')
 return res
 return traced

Rebind the name fib to a traced version of fib
fib = trace1(fib)
Function Decorators

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

Why not just use this?
Can be tricky! Iteration is a special case of recursion
Idea: Figure out what state must be maintained by the function

```
def summation(n, term):
    if n == 0:
        return 0
    return summation(n - 1, term) + term(n)
```

What's summed so far?

```
def summation_iter(n, term):
    total = 0
    while n > 0:
        total, n = total + term(n), n - 1
    return total
```

Initial value

Termination condition

How to get each incremental piece
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of iteration can be passed as parameters

```python
def fib_iter(n):
    if n == 0:
        return 0
    fib_n, fib_n_1, k = 1, 0, 1
    while k < n:
        fib_n, fib_n_1 = fib_n + fib_n_1, fib_n
        k = k + 1
    return fib_n

def fib_rec(n, fib_n, fib_n_1, k):
    if n == 0:
        return 0
    if k >= n:
        return fib_n
    return fib_rec(n, fib_n + fib_n_1, fib_n, k + 1)
```

Local names become...

Parameters in a recursive function
Mutual Recursion

Mutual recursion is when the recursive process is split across multiple functions

```python
@trace1
def factorial(n):
    if n == 0:
        return 1
    return n * factorial(n-1)
```

Example: http://goo.gl/aNiDA
Recall the `make_adder` function from previous lectures. We converted a multi-argument function, `add`, into a series of single-argument functions:

```python
def make_adder(n):
    def adder(k):
        return add(n, k)
    return adder

>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

```python
def make_multiplier(n):
    def multiplier(k):
        return mul(n, k)
    return multiplier

>>> make_multiplier(2)(3)
6
>>> mul(2, 3)
6
```

How can we do this in general without repeating ourselves?
Currying

First, identify common structure.
Then define a function that generalizes the procedure.

```python
def make_adder(n):
    def adder(k):
        return add(n, k)
    return adder

>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

```python
def curry2(f):
    def outer(n):
        def inner(k):
            return f(n, k)
        return inner
    return outer

>>> curry2(mul)(2)(3)
6
>>> mul(2, 3)
6
```

This process of converting a multi-argument function to consecutive single-argument functions is called **currying**.
Interpreter Session
“Currying” is named after Haskell Curry. The concept of “currying” was originated by Moses Schönfinkel. A better name for currying might be “schönfinkeling”
def square(x):
 return mul(x, x)
def sum_squares(x, y):
 return square(x) + square(y)

What does sum_squares need to know about square?

- square takes one argument. Yes
- square has the intrinsic name square. No
- square computes the square of a number. Yes
- square computes the square by calling mul. No

If the name “square” were bound to a built-in function, sum_squares would still work identically.
What is Data?

Data: the things that programs fiddle with

Primitive values are the simplest type of data

- Integers: 2, 3, 2013, -837592010
- Floating point (decimal) values: -4.5, 98.6
- Booleans: True, False

How do we represent more complex data?

We need data abstractions!
Data Abstraction

Compound data combine smaller pieces of data together

- A date: a year, month, and day
- A geographic position: latitude and longitude

An abstract data type lets us manipulate compound data as a unit

Isolate two parts of any program that uses data

- How data are represented (as parts)
- How data are manipulated (as units)

Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use
Rational Numbers

\[
\begin{array}{c}
\text{numerator} \\
\text{denominator}
\end{array}
\]

Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation is lost!
Assume we can compose and decompose rational numbers:

Constructor \(\text{rational}(n, d) \) returns a rational number \(x \)

Selectors
- \(\text{numer}(x) \) returns the numerator of \(x \)
- \(\text{denom}(x) \) returns the denominator of \(x \)
Rational Number Arithmetic

Example:

\[
\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}
\]

\[
\frac{3}{2} + \frac{3}{5} = \frac{21}{10}
\]

General Form:

\[
\frac{nx}{dx} \times \frac{ny}{dy} = \frac{nx \times ny}{dx \times dy}
\]

\[
\frac{nx}{dx} + \frac{ny}{dy} = \frac{nx \times dy + ny \times dx}{dx \times dy}
\]
Rational Number Arithmetic Code

```python
def mul_rational(x, y):
    return rational(numer(x) * numer(y), denom(x) * denom(y))

def add_rational(x, y):
    nx, dx = numer(x), denom(x)
    ny, dy = numer(y), denom(y)
    return rational(nx * dy + ny * dx, dx * dy)

def eq_rational(x, y):
    return numer(x) * denom(y) == numer(y) * denom(x)
```

- `rational(n, d)` returns a rational number `x`
- `numer(x)` returns the numerator of `x`
- `denom(x)` returns the denominator of `x`
Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Element selection

More tuples next lecture
Representing Rational Numbers

```python
def rational(n, d):
    """Construct a rational number x that represents n/d."""
    ###YOUR CODE HERE

from operator importgetitem

def numer(x):
    """Return the numerator of rational number x."""
    ###YOUR CODE HERE

def denom(x):
    """Return the denominator of rational number x."""
    ###YOUR CODE HERE
```
Interpreter Session
Representing Rational Numbers

```python
def rational(n, d):
    """Construct a rational number x that represents n/d."""
    return (n, d)

from operator import getitem

def numer(x):
    """Return the numerator of rational number x."""
    return getitem(x, 0)

def denom(x):
    """Return the denominator of rational number x."""
    return getitem(x, 1)
```

Construct a tuple

Select from a tuple
Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2}
\]

\[
\frac{2}{5} + \frac{1}{10} = \frac{1}{2}
\]

\[
\frac{15}{6} \times \frac{1/3}{1/3} = \frac{5}{2}
\]

\[
\frac{25}{50} \times \frac{1/25}{1/25} = \frac{1}{2}
\]

```python
from fractions import gcd

def rational(n, d):
    """Construct a rational number x that represents n/d.""
    g = gcd(n, d)
    return (n//g, d//g)
```
Abstraction Barriers

Rational numbers as whole data values

- add_rational
- mul_rational
- eq_rational

Rational numbers as numerators & denominators

- rational
- numer
- denom

Rational numbers as tuples

- tuple
- getitem

However tuples are implemented in Python
Violating Abstraction Barriers

Does not use constructors Twice!

add_rational((1, 2), (1, 4))

def divide_rational(x, y):
 return (x[0] * y[1], x[1] * y[0])

No selectors!
And no constructor!
What is an Abstract Data Type?

- We need to guarantee that constructor and selector functions together specify the right behavior.
- Behavior condition: If we construct rational number x from numerator n and denominator d, then $\text{numer}(x)/\text{denom}(x)$ must equal n/d.
- An abstract data type is some collection of selectors and constructors, together with some behavior condition(s).
- If behavior conditions are met, the representation is valid.

You can recognize data types by behavior, not by bits
Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element tuple (also known as a pair).

What is a pair?

Constructors, selectors, and behavior conditions:

If a pair \(p \) was constructed from elements \(x \) and \(y \), then

- \(\text{getitem_pair}(p, 0) \) returns \(x \), and
- \(\text{getitem_pair}(p, 1) \) returns \(y \).

Together, selectors are the inverse of the constructor.

Generally true of container types. Not true for rational numbers because of GCD.
def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch

def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

Functional Pair Implementation

This function represents a pair

Constructor is a higher-order function

Selector defers to the functional pair
Using a Functionally Implemented Pair

```python
>>> p = pair(1, 2)

>>> getitem_pair(p, 0)
1

>>> getitem_pair(p, 1)
2
```

If a pair \(p \) was constructed from elements \(x \) and \(y \), then

- `getitem_pair(p, 0)` returns \(x \), and
- `getitem_pair(p, 1)` returns \(y \).

This pair representation is valid!