61A LECTURE 16 –
TREES,
ORDERS OF GROWTH
Steven Tang and Eric Tzeng
July 22, 2013

Announcements
- Project 3 pushed back one day to August 2
- Regrades for project 1 composition scores, due by next Monday
- Potluck Friday, July 26 6-8pm, in the Woz Lounge (same place as last time)

The data structures we cover in 61A are used everywhere in CS
More about data structures in 61B
Example: recursive lists (also called linked lists)
- Operating systems
- Interpreters and compilers
- Anything that uses a queue

The Scheme programming language, which we will learn soon, uses recursive lists as its primary data structure

Data Structure Applications
The data structures we cover in 61A are used everywhere in CS

Example: Environments

Recursive Tree Processing
Tree operations typically make recursive calls on branches

```python
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
    return sum(map(count_leaves, tree))

def map_tree(tree, fn):
    if type(tree) != tuple:
        return fn(tree)
    return tuple(map_tree(branch, fn) for branch in tree)
```
Trees with Internal Node Values

Trees can have values at internal nodes as well as their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 0:
        return Tree(0)
    if n == 1:
        return Tree(1)
    left = fib_tree(n - 2)
    right = fib_tree(n - 1)
    return Tree(left.entry + right.entry, left, right)
```

Sets

A built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```python
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}
>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}
```

Implementing Sets

What we should be able to do with a set:

- Membership testing: Is a value an element of a set?
- Union: Return a set with all elements in set1 or set2
- Intersection: Return a set with any elements in set1 and set2
- Adjunction: Return a set with all elements in s and a value v

Implementation considerations

- Many ways to accomplish this
- Not all solutions are made equal!
- Need a formal way to discuss how efficient implementations are
- Enter: orders of growth!
- Side note: we don’t care about how efficient your implementations are in this course...
- ...but you do need to know how to identify the characteristics of a program’s performance

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```python
def count_factors(n):
    factors = 0
    for k in range(1, n + 1):
        if n % k == 0:
            factors += 1
    return factors
```

```python
sqrt_n = int(math.sqrt(n))
for k in range(1, sqrt_n + 1):
    if n % k == 0:
        factors *= 2
        if k == sqrt_n:
            factors += 1
    k += 1
return factors
```
Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

\(n \): size of the problem

\(R(n) \): Measurement of some resource used (time or space)

\(R(n) = \Theta(f(n)) \)

means that there are positive constants \(k_1 \) and \(k_2 \) such that

\[k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n) \]

for sufficiently large values of \(n \).

Some useful properties...

- Constant factors make no difference (why is this?)

\(\Theta(100000n) = \Theta(n) = \Theta(0.000001n) \)

- When summing terms, only the highest order term matters

\(\Theta(n^2 + n + 1) = \Theta(n^2) \)

- We often say the \(n^2 \) term dominates the other two

Constant Time: \(\Theta(1) \)

Time does not depend on input size.

Time

\[
\begin{align*}
\text{def } g(n) : \\
\text{ return 42 }
\end{align*}
\]

\[
\begin{align*}
\text{def } f(n) : \\
\text{ if } n > 5 : \\
\text{ bas } += 5 \\
\text{ return bas }
\end{align*}
\]

\[
\begin{align*}
\text{def } is\text{-even}(n) : \\
\text{ return } n \% 2 == 0
\end{align*}
\]

Iteration vs. Tree Recursion (Time)

Iterative and recursive implementations are not the same.

Time

\[
\begin{align*}
\text{def } fib\text{-iter}(n) : \\
\text{ prev, curr } = 1, 0 \\
\text{ for } _ in \text{ range}(n - 1) : \\
\text{ prev, curr } = \text{ curr, prev + curr} \\
\text{ return curr}
\end{align*}
\]

Time

\[
\begin{align*}
\text{def } fib(n) : \\
\text{ if } n == 1 : \\
\text{ return 0} \\
\text{ if } n == 2 : \\
\text{ return 1} \\
\text{ return } fib(n - 2) + fib(n - 1)
\end{align*}
\]

You guys have seen how to make the recursive one faster (memoization)

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Time

\[
\begin{align*}
\text{def } count\text{-factors}(n) : \\
\text{ factors } = 0 \\
\text{ for } k \text{ in range}(1, \sqrt{n} + 1) : \\
\text{ if } n \% k == 0 : \\
\text{ factors } += 1 \\
\text{ return factors}
\end{align*}
\]

Time

\[
\begin{align*}
\text{def } sqrt\text{-n}(n) : \\
\text{ sqrt_n } = \sqrt{n} \\
\text{ k, factors } = 1, 0 \\
\text{ while } k < \text{sqrt_n} : \\
\text{ if } n \% k == 0 : \\
\text{ factors } += 2 \\
\text{ k += 1} \\
\text{ if } k * k == n : \\
\text{ factors } += 1 \\
\text{ return factors}
\end{align*}
\]
Exponentiation

Goal: one more multiplication lets us double the problem size.

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n - 1)

def square(x):
    return x * x

def fast_exp(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(fast_exp(b, n // 2))
    else:
        return b * fast_exp(b, n - 1)
```

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of **active** environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

- Environments for any statements currently being executed
- Parent environments of functions named in active environments

Fibonacci Memory Consumption

Assume we have reached this step.

<table>
<thead>
<tr>
<th>fib(5)</th>
<th>fib(4)</th>
<th>fib(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(2)</td>
<td>fib(1)</td>
<td>fib(0)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>fib(2)</td>
<td>fib(1)</td>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>fib(1)</td>
<td>fib(0)</td>
<td>fib(0)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fibonacci Memory Consumption

Assume we have reached this step.

<table>
<thead>
<tr>
<th>fib(5)</th>
<th>fib(4)</th>
<th>fib(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(2)</td>
<td>fib(1)</td>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>fib(2)</td>
<td>fib(1)</td>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>fib(1)</td>
<td>fib(0)</td>
<td>fib(0)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Time Space

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp(b, n)</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>square(x)</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
</tr>
<tr>
<td>fast_exp(b, n)</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>count_factors(n)</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>sqrt(n)</td>
<td>(\Theta(\sqrt{n}))</td>
<td>(\Theta(1))</td>
</tr>
</tbody>
</table>
Iteration vs. Tree Recursion

Iterative and recursive implementations are not the same.

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>

```python
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n - 1):
        prev, curr = curr, prev + curr
    return curr
```

```python
def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n - 2) + fib(n - 1)
```

You guys have seen how to make the recursive one faster (memoization)

Comparing Orders of Growth

- $\Theta(2^n)$: Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$
- $\Theta(n!)$: Incrementing the problem scales $R(n)$ by a factor.
- $\Theta(n^2)$: Quadratic growth. E.g., operations on all pairs. Incrementing n increases $R(n)$ by the problem size n.
- $\Theta(n)$: Linear growth. Resources scale with the problem. Doubling the problem only increments $R(n)$.
- $\Theta(\log n)$: Logarithmic growth. These processes scale well. Doubling the problem only increments $R(n)$.
- $\Theta(1)$: Constant. The problem size doesn’t matter.

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items

```python
def empty(s):
    return s is Rlist.empty

def set_contains(s, v):
    if empty(s):
        return False
    elif s.first == v:
        return True
    return set_contains(s.rest, v)
```

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

```python
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    return Rlist(v, s)

def intersect_set(set1, set2):
    f = lambda v: set_contains(set2, v)
    return filter_rlist(set1, f)

def union_set(set1, set2):
    f = lambda v: not set_contains(set2, v)
    set1_not_set2 = filter_rlist(set1, f)
    return extend_rlist(set1_not_set2, set2)
```

Break!

- After the break, we’ll take what we just learned and use it to compare three different implementations of sets

Time order of growth

- $\Theta(n)$: The size of the set
- $\Theta(n^2)$: Assume sets are the same size
- $\Theta(n^2)$: The size of the set

Order of growth? $\Theta(n)$
Set Intersection Using Ordered Sequences
This algorithm assumes that elements are in order.

```python
def intersect_set2(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    e1, e2 = set1.first, set2.first
    if e1 == e2:
        rest = intersect_set2(set1.rest, set2.rest)
        return Rlist(e1, rest)
    elif e1 < e2:
        return intersect_set2(set1.rest, set2)
    elif e2 < e1:
        return intersect_set2(set1, set2.rest)
```

Order of growth? $\Theta(n)$

Tree Sets
Proposal 3: A set is represented as a Tree. Each entry is:
- Larger than all entries in its left branch and
- Smaller than all entries in its right branch

```
8
/   \
5   9
/ \
3 11
```

Membership in Tree Sets
Set membership tests traverse the tree
- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```python
def set_contains3(s, v):
    if s is None:
        return False
    elif s.entry == v:
        return True
    elif s.entry < v:
        return set_contains3(s.right, v)
    elif s.entry > v:
        return set_contains3(s.left, v)
```

Order of growth?

Adjoining to a Tree Set
```
8
/   \
5   9
/ \
3 11
```

What Did I Leave Out?
Sets as ordered sequences:
- Adjoining an element to a set
- Union of two sets

Sets as binary trees:
- Intersection of two sets
- Union of two sets

That’s homework!