CS61A Final Review

August 14, 2013

Topics Since Midterm II

- Interpreters
- Streams
- Iterators and generators
- Logic
- Parallelism
- MapReduce

Interpreters

Project 4; Lab 6a, 6b; Discussion 5b, 6a

- read input
- translate the input into an expression (parse)
- evaluate the parsed expression
- print the result

```python
def repl():
    while True:
        try:
            src = input('scm> ')
            expression = read_exp(tokenize(src))
            print(calc_eval(expression))
        except SomeErrors:
            ...
```

Streams

Discussion 7a

- lazy RList: they have a first and a rest
- the rest is only evaluated when needed

```python
class Stream(RList):
    def __init__(self, first, compute_rest=lambda: Stream.empty):
        self.first = first
        self._compute_rest = compute_rest
        self._rest = None

    @property
def rest(self):
        if self._compute_rest:
            self._rest = self._compute_rest()
            self._compute_rest = None
        return self._rest
```

```python
def make_stream(<some arguments>):
    def compute_rest():
        return make_stream(<some updated arguments>)
    return Stream(first, compute_rest)

def integer_stream(first=1):
    def compute_rest():
        return integer_stream(first+1)
    return Stream(first, compute_rest)
```

```
look ma, no arguments!
```

```
construct a Stream returns another Stream
```
Iterators and Generators

Lab 7a; Discussion 7a

• can represent infinite sequences in finite memory
• represent sequences with functions that compute the next values
• will only calculate values when they are needed

Must have the following methods:
 __iter__(): returns an iterator object
 __next__(): checks if there are any values left to compute and raises a StopIteration error if there aren't; calculates the next value

Generators are special Python iterators. They use yield statements to report values.

But remember, you are allowed to have an Iterator that only has the __iter__ method as long as it returns an object that has a __next__ method.

Logic

Lab 7b; Discussion 8a

• Declarative Programming vs Imperative Programming
• expressions are facts or queries
• a simple fact declare a relation to be true
• a compound fact includes multiple relations

{fact <conclusion>
 <hypothesis 1>
 ...
 <hypothesis n>}

the conclusion is true if and only if all hypotheses are true

Parallelism

Discussion 7b

• multiple programs being run at the same time can yield results that would not happen if the programs were run in serial
• as long as programs don’t modify shared state, running programs in parallel is great!
• if programs do need to modify shared state, then locks and semaphores are used to indicate when access is permitted
• race conditions: when multiple threads concurrently access the same data and mutate it

MapReduce

Lab 8a

• a framework for concurrently processing huge amounts of data
• map phase: apply a mapper function to inputs, emitting a set of intermediate key-value pairs
• reduce phase: for each intermediate key, apply a reducer function over all the corresponding intermediate values