Remember homework 6? Let’s take a second look at the Calculator language, a subset of a language we’ll be learning later called Scheme. In today’s discussion, we’ll be looking at implementing Calculator using regular Python.

1 Calculator

Here is a reminder of how our Calculator language looks so far. Right now it can handle the four basic arithmetic operations which can be nested and take varying numbers of arguments. Here’s a couple examples of Calculator in action:

> (+ 2 2)
4
> (- 5)
-5
> (* (+ 1 2) (+ 2 3))
15

The goal is to write an interpreter for this Calculator language. The job of an interpreter is, given an expression, evaluate its meaning. So let’s talk about expressions.

1.1 Representing Expressions

There are two kinds of expressions. A call expression is a linked list - where the first element is the operator, and each subsequent element is an operand. A primitive expression is an operator symbol or number. When we type a line at the Calculator prompt and hit enter, we’ve just sent an expression to the interpreter.

To represent Scheme lists in Python, we used Pair objects. The class definition is below:
class nil:
 """The empty list"""

 def __len__(self):
 return 0

 def map(self, fn):
 return self

 def to_py_list(self):
 return []

nil = nil() # nil now refers to a single instance of nil class

class Pair:

 def __init__(self, first, second=nil):
 self.first = first
 self.second = second

 def __len__(self):
 n, second = 1, self.second
 while isinstance(second, Pair):
 n += 1
 second = second.second
 if second is not nil:
 raise TypeError("length attempted on improper list")
 return n

 def __getitem__(self, k):
 if k < 0:
 raise IndexError("negative index into list")
 j, y = 0, self
 while j < k:
 if y.second is nil:
 raise IndexError("list index out of bounds")
 elif not isinstance(y.second, Pair):
 raise TypeError("ill-formed list")
 j, y = j + 1, y.second
 return y.first


```python
def map(self, fn):
    """Returns a Scheme list after mapping Python function fn over self."""
    mapped = fn(self.first)
    if self.second is nil or isinstance(self.second, Pair):
        return Pair(mapped, self.second.map(fn))
    else:
        raise TypeError("ill-formed list")

def to_py_list(self):
    """Returns a Python list containing the elements of this Scheme list."""
    y, result = self, []
    while y is not nil:
        result += [y.first]
        if not isinstance(y.second, Pair) and y.second is not nil:
            raise TypeError("ill-formed list")
        y = y.second
    return result
```

1.2 Questions

1. Translate the following Python representation of Calculator expressions into the proper Scheme-syntax:

 >>> Pair(‘+’, Pair(1, Pair(2, Pair(3, Pair(4, nil))))))

 >>> Pair(‘+’, Pair(‘1’, Pair(Pair(‘*’, Pair(2, Pair(3, nil))), nil)))

2. Translate the following Calculator expressions into calls to the `Pair` constructor.

 > (+ 1 2 (+ 3 4))

 > (+ 1 (* 2 3) 4)
1.3 Evaluation

So what is evaluation? Evaluation discovers the form of an expression and executes a corresponding evaluation rule.

Primitive expressions are evaluated directly. Call expressions are evaluated recursively:

1. Evaluate each operand expression,
2. Collect their values as a list of arguments, and
3. Apply the named operator to the argument list.

Here’s `calc_eval`:

```python
def calc_eval(exp):
    if not isinstance(exp, Pair):  # expression is primitive
        return exp
    else:
        operator, operands = exp.first, exp.second
        args = operands.map(calc_eval).to_py_list()
        return calc_apply(operator, args)
```

As you can see, all we’ve done is follow the rules of evaluation outlined above. If the expression is primitive (i.e. not a Scheme list), simply return it. Otherwise, evaluate the operands and apply the operator to the evaluated operands.

How do we apply the operator? We’ll use `calc_apply`, with dispatching on the operator name:

```python
def calc_apply(operator, args):
    if operator == '+':
        return sum(args)
    elif operator == '-':
        if len(args) == 1:
            return -args[0]
        else:
            return args[0] - sum(args[1:]),
    elif operator == '*':
        return reduce(mul, args, 1)
```

Depending on what the operator is, we can match it to a corresponding Python call. Each conditional clause above handles the application of one operator.

Something very important to keep in mind: `calc_eval` deals with expressions, `calc_apply` deals with values.
1.4 Questions

1. Suppose we typed each of the following expressions into the Calculator interpreter. How many calls to \texttt{calc_eval} would they each generate? How many calls to \texttt{calc_apply}?

\[
\texttt{> (+ 2 4 6 8)} \quad \texttt{> (+ 2 (* 4 (- 6 8)))}
\]

2. The $-$ operator will fail if given no arguments. Add error handling to raise an exception when this situation is encountered (the type of exception is unimportant).

3. We also want to be able to perform division, as in $\texttt{(\div 4 2)}$. Supplement the existing code to handle this. If division by 0 is attempted, or if there are no arguments supplied, you should raise an exception (the type of exception is unimportant).
4. Alyssa P. Hacker and Ben Bitdiddle are also tasked with implementing the and operator, as in (and (= 1 2) (< 3 4)). Ben says this is easy: they just have to follow the same process as in implementing * and /. Alyssa is not so sure. Who’s right?

5. Now that you’ve had a chance to think about it, you decide to try implementing and yourself. You may assume the conditional operators (e.g. <, >, =, etc) have already been implemented for you.

1.5 Bonus Questions

6. Implement the expt operator such that the following works:

 > (expt 2 3)
 8

 > (expt 3 4)
 81
7. Implement quote. A quote expression simply returns its argument without evaluating it.

 > (quote (2 (3 4) 5))
 (2 (3 4) 5)
 > (quote (+ 3 4))
 (+ 3 4)

8. Implement the list function. list evaluates all its arguments and returns a list of their values.

 > (list (+ 3 4) 5 (* 2 3))
 (7 5 6)
 > (list (+ 1 2) (quote (3 4)) 5)
 (3 (3 4) 5)

9. Now that we can create lists, let’s modify the + operator so that it can add lists together elementwise. You can assume that the lists are the same length and contain only numbers.

 > (+ (quote (7 4 3 9)) (quote 1 1 1 1) (quote (5 1 5 1)))
 (13 6 9 2)
 > (+ (quote (1 2 3 4)) (list (+ 2 2) 3 (- 4 2) 1))
 (5 5 5 5)
2 Trees as Classes

2.1 Trees

Before, we represented trees using functions. Now that we’ve learned OOP, let’s see Trees in a whole new way (but not really)! A tree has a datum and a list of children as before.

class Tree:
 def __init__(self, datum, *args):
 self.datum = datum
 self.children = list(args)

1. Implement the method size which returns the size of a tree.

def size(self):
 ""
 >>> t = Tree(9, Tree(1, Tree(1), Tree(9)), Tree(1, Tree(1)))
 >>> t.size()
 6
 ""

2. Implement the height method. The height of a tree is the length of the longest path to a leaf.

def height(self):
 ""
 >>> t = Tree(1, Tree(2, Tree(4), Tree(5, (Tree(7))))), Tree(3, Tree(6)))
 >>> t.children[1].height() # Tree whose datum is 3
 1
 >>> t.height() # longest path
 3
 ""
3. The best part about classes are their mutability. Let’s make a method `replace` that replaces all data of some value in a tree with a new value.

```python
def replace(self, old, new):
    ""
    >>> t = Tree(1, Tree(2, Tree(3), Tree(2)), Tree(3, Tree(2)))
    >>> t.replace(3, 1)
    >>> t.pretty_print()
    1
    |__2
    |   |__1
    |   |__2
    |__1
    |   |__2
    ""
```

4. Implement a method `add_tree` that adds a child to the end of the tree.

```python
def add_tree(self, tree):
    ""
    >>> t = Tree(1, Tree(2))
    >>> t.add_tree(Tree(3, Tree(4)))
    >>> t.pretty_print()
    1
    |__2
    |__3
    |   |__4
    """
5. Implement a `get_tree` method that returns the node in the tree whose `datum` is equal to `val`, or `None` if no such node exists. You may assume that there are no duplicate elements in the tree.

```python
def get_tree(self, val):
 """
 >>> t = Tree(1, Tree(2, Tree(4), Tree(5)), Tree(3, Tree(6)))
 >>> t.get_tree('foo')
 >>> t.get_tree(3).pretty_print()
 3
 /__6
 """
```

### 2.2 Binary Trees

A Binary Tree is a tree in which every node has at most two children, one to the left and one to the right.

```python
class BinaryTree(object):
 def __init__(self, datum, left=None, right=None):
 self.datum, self.left, self.right = datum, left, right

1. Implement the method `size` to find the size of the tree.

```python
def size(self):
    """ Returns the size of a tree.
    >>> t = BinaryTree(7, BinaryTree(3, 
    BinaryTree(4), BinaryTree(6)))
    >>> t.size()
    4
    >>> BinaryTree(3, None, BinaryTree(5)).size()
    2
    """
2. A Binary Search Tree (BST) is a Binary Tree in which all datum values in the left child of a tree are less than its datum, and all datum values to the right are greater than its datum. Make a method is_bst that determines whether a Binary Tree is also a BST.

```python
def is_bst(self, low=float('-inf'), high=float('inf')):
 """Makes sure a tree is a bst."
 >>> t = BinaryTree(5, BinaryTree(3), BinaryTree(6))
 >>> t.pretty_print()
 5
 / \
 3 6
 >>> t.is_bst()
 True
 >>> s = BinaryTree(7, BinaryTree(4,
 BinaryTree(3), BinaryTree(8)), None)
 >>> s.pretty_print()
 7
 / \
 4
 / \
 3 8
 >>> s.is_bst() # 8 is bigger than 7 though it is on the left
 False
 """
```
2.3 Binary Search Trees

You can also make a BST class that inherits from a Binary Tree.

```python
class BST(BinaryTree):
 def __init__(self, datum, left=None, right=None):
 BinaryTree.__init__(self, datum, left, right)
 assert self.is_bst(), "Breaking Invariants"
```

As a fundamental quirk of class objects is their mutability, it’s important to create a way to add to our BST while maintaining it’s properties of being sorted.

1. Implement a method `insert` which will insert an element into the tree. Make sure you preserve the BST invariant (things to the left are smaller, things to the right are larger). If the element is already present, don’t add it to the tree.

```python
def insert(self, elem):
 ""
 >>> t = BST(15, BST(7))
 >>> t.insert(12)
 >>> t.insert(28)
 >>> t.insert(7)
 >>> t.pretty_print()
 15
 / \
 7 28
 \
 12
 ""
```