Lecture 4: Environment Diagrams

Brian Hou
June 21, 2016

Announcements

- Homework 1 is due Sunday 6/26
- Project 1 is released, due Thursday 6/30
 - Earn 1 EC point for completing it by Wednesday 6/29
- Go to discussion today! Each discussion is worth two exam recovery points
- Ask questions during lecture on Piazza!

Roadmap

- Introduction
- Functions
- Data
- Mutability
- Objects
- Interpretation
- Paradigms
- Applications

Abstraction

- This week (Introduction), the goals are:
 - To learn the fundamentals of programming
 - To become comfortable with Python

Abstraction

"The essence of abstraction is preserving information that is relevant in a given context, and forgetting information that is irrelevant in that context."
- John V. Guttag, Introduction to Computation and Programming Using Python

Discussion Question 1

What does pyramid compute?

```python
n2 = def pyramid(n):
a, b, total = 0, n, 0
while b:
a, b = (a+b, b-1)
total = total + a + b
2 : (n+1)
return total

pyramid(4)
```

n2 + 1
n - (n + 1)
Tools for abstraction

• Assignment is a simple form of abstraction: bind names to values
• Function definition is a more powerful form of abstraction: bind names to a series of computations
• Functional abstraction is the idea that we can call functions without thinking about how the function works

Miscellaneous Python features (demo)

• Operators
• Multiple return values
• Docstrings
• Doctests
• Default arguments

Environment Diagrams

Lists and for Loops (demo)

```python
s = [3, 1, 4, 1, 5, 9]
def max_difference(s):
    smallest = s[0]
    largest = s[0]
    for elem in s:
        if elem < smallest:
            smallest = elem
        if elem > largest:
            largest = elem
    return largest - smallest
max_difference(s)
```

Functions and while loops (demo)

```python
x = 2
def repeated(f, n, x):
    while n > 0:
        x = f(x)
        n -= 1
    return x
def square(x):
    return x * x
repeated(square, n, x)
```

Lambda Expressions
Lambda Expressions

>>> x = 10
An expression: this one evaluates to a number.

>>> square = x * x
Also an expression: evaluates to a function.

>>> square = lambda x: x * x
A function with parameter x that returns the value of \(x \times x\).

>>> square(4)
16
Must be a single expression.

Lambda expressions in Python cannot contain statements at all!
Lambda expressions aren’t common in Python, but important in general.