Lecture 7: Tree Recursion

Brian Hou
June 29, 2016
Announcements

• Project 1 is due tomorrow, +1 EC point if submitted today
 • Run `ok --submit` to check against hidden tests
 • Check your submission at `ok.cs61a.org`
 • Invite your partner (watch this video)
• Homework 2 is due today, Homework 1 solutions uploaded
• Quiz 2 is tomorrow at the beginning of lecture
 • If you have an alternate time or are not enrolled in the class, please arrive at 11:45 am
• Week 2 checkoff must be done in lab today or tomorrow
 • Talk about hw01, lab02, lab03 with a lab assistant
• Alternate Exam Request: goo.gl/forms/FDQix4I5dNXPQDgw2
Hog Contest Rules

- Up to two people submit one entry; max one entry per person
- Your score is the number of entries against which you win more than 50.00001% of the time
- All strategies must be deterministic, pure functions of the current player and opponent scores
- Top 3 entries will receive EC
- The real prize: honor and glory
 - Also: bragging rights
Ready? cs61a.org/proj/hog_contest
Roadmap

- This week (Functions), the goals are:
 - To understand the idea of *functional abstraction*
 - To study this idea through:
 - higher-order functions
 - recursion
 - orders of growth
Recursion
The Cascade Function (demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
cascade(n//10)
cascade(123)
```

Output

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
Two Definitions of Cascade

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (to me)

• When learning to write recursive functions, put base cases first

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n // 10)
    print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n // 10)
    print(n)
```

(demo)
Inverse Cascade

Output

```python
def inverse_cascade(n):
    def f_then_g(f, g, n):
        if n:
            f(n)
            g(n)

    grow = lambda n: f_then_g(
grow(n)
print(n)
shrink(n)

shrink = lambda n: f_then_g(
grow(n)
print(shrink(n//10))
```

```
Fibonacci
The Fibonacci Sequence

\begin{align*}
n & : \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \quad \ldots, \quad 35 \\
\text{fib}(n) & : \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \quad \ldots, \quad 9,227,465
\end{align*}
The Fibonacci Sequence

\[ n: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \]
\[ \text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

```python
def fib(n):
 pred, curr = 0, 1
 k = 1
 while k < n:
 pred, curr = curr, pred + curr
 k += 1
 return curr
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

\[ n: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \]
\[ \text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

```python
def fib(n):
 if n == 0:
 return 0
 pred, curr = 0, 1
 k = 1
 while k < n:
 pred, curr = curr, pred + curr
 k += 1
 return curr
```

This correction was made on July 3 at 10PM.

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

\[ n: \quad 0, 1, 2, 3, 4, 5, 6, \quad 7, \quad 8, \]
\[ \text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

```python
def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

```python
def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)
```
A Tree-Recursive Process

fib(5)
  /  
/fib(3)  fib(4)
  /  
/fib(1) fib(2)  
  /  
1 fib(0) fib(1)
  /  
0 1

fib(2)
  /  
/fib(0) fib(1)
  /  
0 1

fib(3)
  /  
/fib(1) fib(2)
  /  
1 fib(0) fib(1)
  /  
0 1
A Tree-Recursive Process

```
<table>
<thead>
<tr>
<th>fib(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>fib(3) fib(4)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>fib(1) fib(2)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>fib(0) fib(1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1 fib(0) fib(1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>fib(0) fib(1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1 fib(0) fib(1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0 1</td>
</tr>
</tbody>
</table>
```
Break!
Counting Partitions
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

How many different ways can I give out 6 pieces of chocolate if nobody can have more than 4 pieces?

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- $2 + 4 = 6$
- $1 + 1 + 4 = 6$
- $3 + 3 = 6$
- $1 + 2 + 3 = 6$
- $1 + 1 + 1 + 3 = 6$
- $2 + 2 + 2 = 6$
- $1 + 1 + 2 + 2 = 6$
- $1 + 1 + 1 + 1 + 2 = 6$
- $1 + 1 + 1 + 1 + 1 + 1 = 6$
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - `count_partitions(2, 4)`
  - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

```python
def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.