Announcements
Announcements

- Project 1 is due tomorrow, +1 EC point if submitted today
Announcements

• Project 1 is due tomorrow, +1 EC point if submitted today
  • Run `ok --submit` to check against hidden tests
Announcements

• Project 1 is due tomorrow, +1 EC point if submitted today
  • Run `ok --submit` to check against hidden tests
  • Check your submission at `ok.cs61a.org`
Announcements

- Project 1 is due tomorrow, +1 EC point if submitted today
  - Run `ok --submit` to check against hidden tests
  - Check your submission at `ok.cs61a.org`
  - Invite your partner (watch this video)
Announcements

- Project 1 is due tomorrow, +1 EC point if submitted today
  - Run **ok --submit** to check against hidden tests
  - Check your submission at [ok.cs61a.org](http://ok.cs61a.org)
  - Invite your partner (watch [this video](#))
- Homework 2 is due today, Homework 1 solutions uploaded
Announcements

- Project 1 is due tomorrow, +1 EC point if submitted today
  - Run `ok --submit` to check against hidden tests
  - Check your submission at `ok.cs61a.org`
  - Invite your partner (watch [this video](#))
- Homework 2 is due today, Homework 1 solutions uploaded
- Quiz 2 is tomorrow at the beginning of lecture
Announcements

• Project 1 is due tomorrow, +1 EC point if submitted today
  • Run ok --submit to check against hidden tests
  • Check your submission at ok.cs61a.org
  • Invite your partner (watch this video)
• Homework 2 is due today, Homework 1 solutions uploaded
• Quiz 2 is tomorrow at the beginning of lecture
  • If you have an alternate time or are not enrolled in the class, please arrive at 11:45 am
Announcements

• Project 1 is due tomorrow, +1 EC point if submitted today
  • Run `ok --submit` to check against hidden tests
  • Check your submission at ok.cs61a.org
  • Invite your partner (watch this video)
• Homework 2 is due today, Homework 1 solutions uploaded
• Quiz 2 is tomorrow at the beginning of lecture
  • If you have an alternate time or are not enrolled in the class, please arrive at 11:45 am
• Week 2 checkoff must be done in lab today or tomorrow
Announcements

• Project 1 is due tomorrow, +1 EC point if submitted today
  • Run `ok --submit` to check against hidden tests
  • Check your submission at `ok.cs61a.org`
  • Invite your partner (watch this video)
• Homework 2 is due today, Homework 1 solutions uploaded
• Quiz 2 is tomorrow at the beginning of lecture
  • If you have an alternate time or are not enrolled in the class, please arrive at 11:45 am
• Week 2 checkoff must be done in lab today or tomorrow
  • Talk about hw01, lab02, lab03 with a lab assistant
Announcements

• Project 1 is due tomorrow, +1 EC point if submitted today
  • Run **ok --submit** to check against hidden tests
  • Check your submission at **ok.cs61a.org**
  • Invite your partner (watch **this video**)
• Homework 2 is due today, Homework 1 solutions uploaded
• Quiz 2 is tomorrow at the beginning of lecture
  • If you have an alternate time or are not enrolled in the class, please arrive at 11:45 am
• Week 2 checkoff must be done in lab today or tomorrow
  • Talk about hw01, lab02, lab03 with a lab assistant
• Alternate Exam Request: goo.gl/forms/FDQix4I5dNXPQDgw2
Hog Contest Rules
Hog Contest Rules

- Up to two people submit one entry;
  max one entry per person
Hog Contest Rules

• Up to two people submit one entry; max one entry per person
• Your score is the number of entries against which you win more than 50.00001% of the time
Hog Contest Rules

• Up to two people submit one entry; max one entry per person

• Your score is the number of entries against which you win more than 50.00001% of the time

• All strategies must be deterministic, pure functions of the current player and opponent scores
Hog Contest Rules

• Up to two people submit one entry; max one entry per person

• Your score is the number of entries against which you win more than 50.00001% of the time

• All strategies must be deterministic, pure functions of the current player and opponent scores

• Top 3 entries will receive EC
Hog Contest Rules

- Up to two people submit one entry; max one entry per person
- Your score is the number of entries against which you win more than 50.00001% of the time
- All strategies must be deterministic, pure functions of the current player and opponent scores
- Top 3 entries will receive EC
- The real prize: honor and glory
Hog Contest Rules

• Up to two people submit one entry; max one entry per person

• Your score is the number of entries against which you win more than 50.00001% of the time

• All strategies must be deterministic, pure functions of the current player and opponent scores

• Top 3 entries will receive EC

• The real prize: honor and glory
  • Also: bragging rights
Hog Contest Rules

• Up to two people submit one entry; max one entry per person

• Your score is the number of entries against which you win more than 50.00001% of the time

• All strategies must be deterministic, pure functions of the current player and opponent scores

• Top 3 entries will receive EC

• The real prize: honor and glory
  • Also: bragging rights

Ready? cs61a.org/proj/hog_contest
Hog Contest Rules

• Up to two people submit one entry; max one entry per person
• Your score is the number of entries against which you win more than 50.00001% of the time
• All strategies must be deterministic, pure functions of the current player and opponent scores
• Top 3 entries will receive EC
• The real prize: honor and glory
  • Also: bragging rights
Ready? cs61a.org/proj/hog_contest
This week (Functions), the goals are:

- To understand the idea of *functional abstraction*
- To study this idea through:
  - higher-order functions
  - recursion
  - orders of growth
Recursion
The Cascade Function
The Cascade Function (demo)
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

Output

123
12
1
12
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

Output

```
123
12
1
12
```

- Each cascade frame is from a different call to cascade.
The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)

cascade(123)
```

**Output**

123
12
1
12

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
The Cascade Function

Output

123
12
1
12

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
cascade(123)
```

Output

123
12
1
12

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
The Cascade Function

### def cascade(n):
1. if n < 10:
   2.   print(n)
2. else:
   3.   print(n)
4.   cascade(n//10)
5.   print(n)
6. cascade(123)

---

**Output**

123
12
1
12

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
cascade(123)
```

Output

123
12
1
12

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
The Cascade Function

Output

123

12

1

12

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
Two Definitions of Cascade
Two Definitions of Cascade (demo)
Two Definitions of Cascade  

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n // 10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n // 10)
        print(n)
```

(demo)
Two Definitions of Cascade

- If two implementations are equally clear, then shorter is usually better.

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n // 10)
        print(n)
```

```python
def cascade(n):
    if n >= 10:
        print(n)
    else:
        print(n)
        cascade(n // 10)
        print(n)
```

(demo)
Two Definitions of Cascade

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (to me)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n // 10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n // 10)
        print(n)
```
Two Definitions of Cascade

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (to me)
- When learning to write recursive functions, put base cases first

```python
def cascade(n):
    if n < 10:
        print(n)
        print(n)
    else:
        print(n)
        cascade(n // 10)
        print(n)
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n // 10)
        print(n)
```

(demo)
Inverse Cascade
Inverse Cascade

Output

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```

```bash
1
12
123
1234
123
12
1
```
Inverse Cascade

Output

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)

def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)
```

```
Inverse Cascade

Output

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)

def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

grow = lambda n: f_then_g(grow, print, n // 10)

shrink = lambda n: f_then_g(print, shrink, n // 10)
```

Inverse Cascade

Output

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)

def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

grow = lambda n: f_then_g(grow, print, n // 10)

shrink = lambda n: f_then_g(print, shrink, n // 10)
```
Fibonacci
The Fibonacci Sequence
The Fibonacci Sequence

\[ n: \ 0, 1, 2, 3, 4, 5, 6, \ 7, \ 8, \]
The Fibonacci Sequence

\[ n: \ 0, 1, 2, 3, 4, 5, 6, \ 7, \ 8, \]
\[ \text{fib}(n): \ 0, 1, 1, 2, 3, 5, 8, 13, 21, \]
The Fibonacci Sequence

\[ n: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, \quad 35 \]

\[ \text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \]
The Fibonacci Sequence

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]
The Fibonacci Sequence

\[
\begin{align*}
n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots \ , \ 35 \\
\text{fib}(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \ , \ 9,227,465
\end{align*}
\]
The Fibonacci Sequence

\[ n: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, \quad 35 \]

\[ \text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, \quad 9,227,465 \]
The Fibonacci Sequence

\[ n: \quad 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \]
\[ \text{fib}(n): \quad 0, \ 1, \ 1, \ 2, \ 3, \ 5, \ 8, \ 13, \ 21, \]
The Fibonacci Sequence

\[
\begin{align*}
n & : \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
fib(n) & : \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

```python
def fib(n):
```

```python
def fib(n):
```
The Fibonacci Sequence

\[
\begin{align*}
n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
\text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \\
\text{def fib}(n): & \\
& \quad \text{pred, curr} = 0, 1
\end{align*}
\]
The Fibonacci Sequence

\[ n: \quad 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \]

\[ \text{fib}(n): \quad 0, \ 1, \ 1, \ 2, \ 3, \ 5, \ 8, \ 13, \ 21, \]

```python

def fib(n):
    pred, curr = 0, 1
    k = 1
```

The Fibonacci Sequence

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

```python
def fib(n):
    pred, curr = 0, 1
    k = 1
    while k < n:
```

The Fibonacci Sequence

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

def fib(n):
    pred, curr = 0, 1
    k = 1
    while k < n:
        pred, curr = curr, pred + curr
The Fibonacci Sequence

\[
\begin{align*}
n & : \ 0, 1, 2, 3, 4, 5, 6, \ 7, \ 8, \\
\text{fib}(n) & : \ 0, 1, 1, 2, 3, 5, 8, 13, 21, \\
\end{align*}
\]

```python
def fib(n):
    pred, curr = 0, 1
    k = 1
    while k < n:
        pred, curr = curr, pred + curr
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

**n**: 0, 1, 2, 3, 4, 5, 6, 7, 8,

**fib(n)**: 0, 1, 1, 2, 3, 5, 8, 13, 21,

```python
def fib(n):
    pred, curr = 0, 1
    k = 1
    while k < n:
        pred, curr = curr, pred + curr
        k += 1
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

\[ n: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \]
\[ \text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

```python
def fib(n):
    pred, curr = 0, 1
    k = 1
    while k < n:
        pred, curr = curr, pred + curr
        k += 1
    return curr
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

\[ n: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \]
\[ \text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \]
The Fibonacci Sequence

\[
\begin{align*}
  n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
  \text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \\
\end{align*}
\]
The Fibonacci Sequence

\[
\text{n: } 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
\text{fib(n): } 0, 1, 1, 2, 3, 5, 8, 13, 21,
\]

```python
def fib(n):
    if n == 0:
```

```python
def fib(n):
    if n == 0:
```
The Fibonacci Sequence

\[
\begin{align*}
    n & : \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
    \text{fib}(n) & : \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
```
The Fibonacci Sequence

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    pred, curr = 0, 1
```

```css
... , 9, 227, 465 ...
```

\[
\begin{align*}
... & \quad 35
\end{align*}
\]
The Fibonacci Sequence

```python
def fib(n):
    if n == 0:
        return 0
    pred, curr = 0, 1
    k = 1
```

- $n$: 0, 1, 2, 3, 4, 5, 6, 7, 8
- $\text{fib}(n)$: 0, 1, 1, 2, 3, 5, 8, 13, 21,
The Fibonacci Sequence

\[
\begin{align*}
n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
\text{fib}(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21, \\
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    pred, curr = 0, 1
    k = 1
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

- **n**: 0, 1, 2, 3, 4, 5, 6, 7, 8,
- **fib(n)**: 0, 1, 1, 2, 3, 5, 8, 13, 21,

```python
def fib(n):
    if n == 0:
        return 0
    pred, curr = 0, 1
    k = 1
    while k < n:
        The next Fibonacci number is the sum of the two previous Fibonacci numbers
```
The Fibonacci Sequence

\[ n: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \]
\[ \text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

```python
def fib(n):
    if n == 0:
        return 0
    pred, curr = 0, 1
    k = 1
    while k < n:
        pred, curr = curr, pred + curr
    return curr
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

\[ n: \quad 0, 1, 2, 3, 4, 5, 6, \quad 7, \quad 8, \]
\[ \text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

```python
def fib(n):
    if n == 0:
        return 0
    pred, curr = 0, 1
    k = 1
    while k < n:
        pred, curr = curr, pred + curr
        k += 1
    return curr
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

\[
\begin{align*}
n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
fib(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21, \\
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    pred, curr = 0, 1
    k = 1
    while k < n:
        pred, curr = curr, pred + curr
        k += 1
    return curr
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

\[
\begin{align*}
n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
fib(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \\
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    pred, curr = 0, 1
    k = 1
    while k < n:
        pred, curr = curr, pred + curr
        k += 1
    return curr
```

This correction was made on July 3 at 10PM

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

\[
\begin{align*}
n & : \quad 0, 1, 2, 3, 4, 5, 6, \quad 7, \quad 8, \\
fib(n) & : \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]
The Fibonacci Sequence

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

```python
def fib(n):
```

The Fibonacci Sequence

\begin{align*}
  n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
  \text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \\
\end{align*}

```python
def fib(n):
    if n == 0:
```

```
The Fibonacci Sequence

\[
\begin{align*}
n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
fib(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
```
The Fibonacci Sequence

\[ n: \ 0, 1, 2, 3, 4, 5, 6, 7, 8, \]
\[ \text{fib}(n): \ 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 0
    else:
        return fib(n-1) + fib(n-2)
```

The Fibonacci Sequence

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    return fib(n-2) + fib(n-1)
```

```
n:  0, 1, 2, 3, 4, 5, 6, 7, 8,
fib(n):  0, 1, 1, 2, 3, 5, 8, 13, 21,
```
The Fibonacci Sequence

\[ n: \ 0, 1, 2, 3, 4, 5, 6, 7, 8, \]
\[ \text{fib}(n): \ 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n)
```

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n)
```
The Fibonacci Sequence

\[
\begin{align*}
n & : 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
fib(n) & : 0, 1, 1, 2, 3, 5, 8, 13, 21, \\
\text{def } & \text{ fib(n):} \\
\text{if } & n == 0: \\
\text{return } & 0 \\
\text{elif } & n == 1: \\
\text{return } & 1 \\
\text{else:} & \\
\end{align*}
\]

The next Fibonacci number is the sum of the two previous Fibonacci numbers
The Fibonacci Sequence

\[ \text{n: 0, 1, 2, 3, 4, 5, 6, 7, 8,} \]
\[ \text{fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21,} \]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
The Fibonacci Sequence

\[ n: \ 0, 1, 2, 3, 4, 5, 6, 7, 8, \]
\[ \text{fib}(n): \ 0, 1, 1, 2, 3, 5, 8, 13, 21, \]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

The next Fibonacci number is the sum of the two previous Fibonacci numbers.
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```
A Tree–Recursive Process
A Tree-Recursive Process

\[ \text{fib}(5) \]
A Tree-Recursive Process

fib(5)

fib(3)
A Tree-Recursive Process

\[
\text{fib}(5) \\
\text{fib}(3) \quad \text{fib}(4)
\]
A Tree–Recursive Process

fib(5)

fib(3)

fib(1)  fib(2)

1  fib(0)  fib(1)

0  1
A Tree-Recursive Process

```
fib(5)
  /   \
/fib(3)  /   \
  /   /\    /   /\  
/fib(1) fib(2) fib(2) fib(3)
   /\   /\                 /\   /\   /\
  1 fib(0) fib(1) fib(0) fib(1) fib(1) fib(0) fib(1)
   \   \       \       \       \       \       \       \       0
    \     \       \       \       \       \       \       1
     \      \       \       \       \       \       0
      \       \       \       \       1
       \       \       \       0
        \       \       1
         \       0
          \   1
           \ 0
            \ 1
```
A Tree-Recursive Process

\[ \text{fib}(5) \]

\[ \text{fib}(3) \]
\[ \text{fib}(1) \quad \text{fib}(2) \]
\[ 1 \quad \text{fib}(0) \quad \text{fib}(1) \]
\[ 0 \quad 1 \]

\[ \text{fib}(4) \]
\[ \text{fib}(2) \]
\[ \text{fib}(0) \quad \text{fib}(1) \]
\[ 0 \quad 1 \]

\[ \text{fib}(3) \]
\[ \text{fib}(1) \quad \text{fib}(2) \]
\[ 1 \quad \text{fib}(0) \quad \text{fib}(1) \]
\[ 0 \quad 1 \]
A Tree-Recursive Process

fib(5)

fib(3)

fib(1)  fib(2)

1  fib(0)  fib(1)

fib(0)  fib(1)

0 1

fib(4)

fib(2)

fib(0)  fib(1)

0 1

fib(3)

fib(1)  fib(2)

1  fib(0)  fib(1)

0 1
A Tree-Recursive Process
A Tree-Recursive Process

```
fib(5)
  /  
/fib(3) fib(4)
  |    |
/fib(1) fib(2) fib(2)
  |    |
1 fib(0) fib(1) fib(0) fib(1)
  |    |
0 1 0 1
```

1

0

1
A Tree-Recursive Process
A Tree-Recursive Process
A Tree-Recursive Process
A Tree-Recursive Process

```
<table>
<thead>
<tr>
<th>fib(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(3)</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>fib(2)</td>
</tr>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

fib(4) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(2)</td>
</tr>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

fib(3) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(2)</td>
</tr>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

fib(2) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

fib(1) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

fib(0) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
```
A Tree-Recursive Process
A Tree-Recursive Process
A Tree-Recursive Process
A Tree-Recursive Process

fib(5)

fib(3)

fib(1)

fib(2)

1

fib(0)

fib(1)

0

1

fib(2)

fib(0)

fib(1)

0

1

fib(3)

fib(1)

fib(2)

1

fib(0)

fib(1)

0

1
A Tree-Recursive Process

```
fib(5)
  / \ fib(3) fib(4)
 /   \ fib(1) fib(2)
|     / \    |
|    1 fib(0) fib(1)
|   /     \    |
| 0       1    |
| / \     / \  |
fib(0) fib(1) fib(2) fib(3)
|   /     / \     |
| 0       1     fib(0) fib(1)
| / \     / \    |
| 1       0     fib(0) fib(1)
|   / \    /     |
| 1     0     1    |
  / \     /     /
fib(0) fib(1) fib(2) fib(3)
```
A Tree-Recursive Process

fib(5)
```
<table>
<thead>
<tr>
<th>fib(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
```
```
<table>
<thead>
<tr>
<th>fib(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
```
```
<table>
<thead>
<tr>
<th>fib(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(3)</td>
</tr>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
```
A Tree-Recursive Process

\[
\begin{align*}
\text{fib}(5) & = \text{fib}(4) + \text{fib}(3) \\
\text{fib}(4) & = \text{fib}(3) + \text{fib}(2) \\
\text{fib}(3) & = \text{fib}(2) + \text{fib}(1) \\
\text{fib}(2) & = \text{fib}(1) + \text{fib}(0) \\
\text{fib}(1) & = 1 \\
\text{fib}(0) & = 0
\end{align*}
\]
A Tree-Recursive Process
A Tree-Recursive Process

fib(5)

fib(3)
fib(1) fib(2)
1 fib(0) fib(1)
0 1

fib(4)
fib(2)
fib(0) fib(1)
0 1

fib(3)
fib(1) fib(2)
1 fib(0) fib(1)
0 1

demo
A Tree-Recursive Process

```
fib(5)
  /  \
fib(3)  fib(4)
  /    /
fib(1) fib(2) fib(2) fib(3)
  /  /  /    /
1  fib(0) fib(1) fib(0) fib(1)
     /  /  /    /
0  1 0 1 1 fib(0) fib(1)
     /  /  /
0 1 0 1
```
Break!
Counting Partitions
Counting Partitions
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

How many different ways can I give out 6 pieces of chocolate if nobody can have more than 4 pieces?
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

**count_partitions(6, 4)**

How many different ways can I give out 6 pieces of chocolate if nobody can have more than 4 pieces?

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\begin{align*}
2 + 4 & = 6 \\
1 + 1 + 4 & = 6 \\
3 + 3 & = 6 \\
1 + 2 + 3 & = 6 \\
1 + 1 + 1 + 3 & = 6 \\
2 + 2 + 2 & = 6 \\
1 + 1 + 2 + 2 & = 6 \\
1 + 1 + 1 + 1 + 2 & = 6 \\
1 + 1 + 1 + 1 + 1 & = 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- $2 + 4 = 6$
- $1 + 1 + 4 = 6$
- $3 + 3 = 6$
- $1 + 2 + 3 = 6$
- $1 + 1 + 1 + 3 = 6$
- $2 + 2 + 2 = 6$
- $1 + 1 + 2 + 2 = 6$
- $1 + 1 + 1 + 1 + 2 = 6$
- $1 + 1 + 1 + 1 + 1 + 1 = 6$
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - \( \text{count_partitions}(2, 4) \)
  - \( \text{count_partitions}(6, 3) \)
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

```python
def count_partitions(n, m):
```

- **Recursive decomposition:** finding simpler instances of the problem.
- **Explore two possibilities:**
  - Use at least one 4
  - Don't use any 4
- **Solve two simpler problems:**
  - `count_partitions(2, 4)`
  - `count_partitions(6, 3)`
- **Tree recursion often involves exploring different choices.**
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

```python
def count_partitions(n, m):
    ... with_m = count_partitions(n-m, m)
```

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
  • Use at least one 4
  • Don't use any 4
• Solve two simpler problems:
  • `count_partitions(2, 4)`
  • `count_partitions(6, 3)`
• Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

```python
def count_partitions(n, m):
    # Recursive decomposition:
    # finding simpler instances of the problem.
    # Explore two possibilities:
    # • Use at least one 4
    # • Don't use any 4
    # Solve two simpler problems:
    # • count_partitions(2, 4)
    # • count_partitions(6, 3)
    # Tree recursion often involves exploring different choices.
    with_m = count_partitions(n-m, m)
    without_m = count_partitions(n, m-1)
```

• Recursive decomposition:
  finding simpler instances of the problem.
• Explore two possibilities:
  • Use at least one 4
  • Don't use any 4
• Solve two simpler problems:
  • count_partitions(2, 4)
  • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

```python
def count_partitions(n, m):

    # Recursive decomposition: finding simpler instances of the problem.
    # Explore two possibilities:
    # - Use at least one 4
    # - Don't use any 4
    # Solve two simpler problems:
    # - count_partitions(2, 4)
    # - count_partitions(6, 3)
    # Tree recursion often involves exploring different choices.

    with_m = count_partitions(n-m, m)
    without_m = count_partitions(n, m-1)

    return with_m + without_m
```

```
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

```python
def count_partitions(n, m):
    if n == 0:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

\[
def\text{count_partitions}(n, m):
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - \text{count_partitions}(2, 4)
  - \text{count_partitions}(6, 3)
- Tree recursion often involves exploring different choices.

\[
\text{if } n == 0:
\]

\[
\text{return } 1
\]

\[
\text{with}_m = \text{count_partitions}(n-m, m)
\]

\[
\text{without}_m = \text{count_partitions}(n, m-1)
\]

\[
\text{return } \text{with}_m + \text{without}_m
\]
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        Counting Partitions
        The number of partitions of a positive integer n, using
        parts up to size m, is the number of ways in which n can be
        expressed as the sum of positive integer parts up to m in
        increasing order.
        • Recursive decomposition: finding simpler instances
          of the problem.
        • Explore two possibilities: if n < 0:
          • Use at least one 4
          • Don't use any 4
        • Solve two simpler problems:
          • count_partitions(2, 4)
          • count_partitions(6, 3)
        • Tree recursion often
          involves exploring different choices.
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    with_m = count_partitions(n-m, m)
    without_m = count_partitions(n, m-1)
    return with_m + without_m
```

- **Recursive decomposition:** finding simpler instances of the problem.
- **Explore two possibilities:**
  - Use at least one 4
  - Don't use any 4
- **Solve two simpler problems:**
  - `count_partitions(2, 4)`
  - `count_partitions(6, 3)`
- **Tree recursion often involves exploring different choices.**
Counting Partitions

The number of partitions of a positive integer $n$, using parts up to size $m$, is the number of ways in which $n$ can be expressed as the sum of positive integer parts up to $m$ in increasing order.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    with_m = count_partitions(n-m, m)
    without_m = count_partitions(n, m-1)
    return with_m + without_m
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - count_partitions(2, 4)
  - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    with_m = count_partitions(n-m, m)
    without_m = count_partitions(n, m-1)
    return with_m + without_m
```

- **Recursive decomposition:** finding simpler instances of the problem.
- **Explore two possibilities:**
  - Use at least one 4
  - Don't use any 4

- **Solve two simpler problems:**
  - count_partitions(2, 4)
  - count_partitions(6, 3)

- **Tree recursion often involves exploring different choices.**

---

Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    with_m = count_partitions(n-m, m)
    without_m = count_partitions(n, m-1)
    return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \( n \), using parts up to size \( m \), is the number of ways in which \( n \) can be expressed as the sum of positive integer parts up to \( m \) in increasing order.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
  - Use at least one 4
  - Don't use any 4
- Solve two simpler problems:
  - `count_partitions(2, 4)`
  - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.