Lecture 24: Logic II

Brian Hou
August 2, 2016
Announcements

- Project 4 is due Friday (8/5)
Announcements

- Project 4 is due Friday (8/5)
 - Finish through Part II today for 1 EC point
Announcements

• Project 4 is due Friday (8/5)
 • Finish through Part II today for 1 EC point
• Homework 9 is due Wednesday (8/3)
Announcements

• Project 4 is due Friday (8/5)
 • Finish through Part II today for 1 EC point
• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture
Announcements

- Project 4 is due Friday (8/5)
 - Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
 - Will cover Logic
Announcements

• Project 4 is due Friday (8/5)
 • Finish through Part II today for 1 EC point
• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture
 • Will cover Logic
• Final Review on Friday (8/5) from 11–12:30pm in 2050 VLSB
Announcements

• Project 4 is due Friday (8/5)
 • Finish through Part II today for 1 EC point
• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture
 • Will cover Logic
• Final Review on Friday (8/5) from 11–12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
Announcements

• Project 4 is due Friday (8/5)
 • Finish through Part II today for 1 EC point
• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture
 • Will cover Logic
• Final Review on Friday (8/5) from 11–12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
Announcements

- Project 4 is due Friday (8/5)
 - Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
 - Will cover Logic
- Final Review on Friday (8/5) from 11–12:30pm in 2050 VLSB
 - Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
- Ants composition revisions due Saturday (8/6)
- Scheme Recursive Art Contest is open! Submissions due 8/9
Announcements

- Project 4 is due Friday (8/5)
 - Finish through Part II today for 1 EC point
- Homework 9 is due Wednesday (8/3)
- Quiz 9 on Thursday (8/4) at the beginning of lecture
 - Will cover Logic
- Final Review on Friday (8/5) from 11–12:30pm in 2050 VLSB
 - Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
- Ants composition revisions due Saturday (8/6)
- Scheme Recursive Art Contest is open! Submissions due 8/9
- **Potluck II** on 8/10! 5–8pm (or later) in Wozniak Lounge
Announcements

• Project 4 is due Friday (8/5)
 • Finish through Part II today for 1 EC point
• Homework 9 is due Wednesday (8/3)
• Quiz 9 on Thursday (8/4) at the beginning of lecture
 • Will cover Logic
• Final Review on Friday (8/5) from 11–12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9
• Potluck II on 8/10! 5–8pm (or later) in Wozniak Lounge
 • Bring food and board games!
Roadmap

- Introduction
- Functions
- Data
- Mutability
- Objects
- Interpretation
- Paradigms
- Applications
This week (Paradigms), the goals are:
This week (Paradigms), the goals are:

- To study examples of paradigms that are very different from what we have seen so far.
This week (Paradigms), the goals are:

- To study examples of paradigms that are very different from what we have seen so far
- To expand our definition of what counts as programming
Anagram

Did you mean: nag a ram?
Anagrams
Anagrams

cat
Anagrams

cat at
Anagrams

cat at
ta at
Anagrams

cat
at
ta
Anagrams

cat
at
act
ta
Anagrams

cat act atc

cat at ta
Anagrams

cat

at

act

atc

cta

ta
Anagrams

<table>
<thead>
<tr>
<th></th>
<th>Act</th>
<th>Atc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>At</td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td></td>
<td>Act</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atc</td>
</tr>
<tr>
<td>Cat</td>
<td></td>
<td>Atc</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td></td>
<td>Tca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Imperative Anagrams
Imperative Anagrams

```python
def anagram(s):
```
def anagram(s):
 if len(s) == 0:
def anagram(s):
 if len(s) == 0:
 return [[]]
def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
anagrams = anagram(s[1:])
def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
 anagrams = anagram(s[1:])
 for x in anagrams:
 result.append([x]+s[0])
 return result
def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
anagrams = anagram(s[1:])
 for x in anagrams:
 for i in range(0, len(x) + 1):
 for i in range(0, len(x) + 1):
def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
anagrams = anagram(s[1:])
for x in anagrams:
 for i in range(0, len(x) + 1):
 new_anagram = x[:i] + [s[0]] + x[i:]

def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
anagrams = anagram(s[1:])
 for x in anagrams:
 for i in range(0, len(x) + 1):
 new_anagram = x[:i] + [s[0]] + x[i:]
 result.append(new_anagram)
def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
anagrams = anagram(s[1:])
 for x in anagrams:
 for i in range(0, len(x) + 1):
 new_anagram = x[:i] + [s[0]] + x[i:]
 result.append(new_anagram)
 return result
def anagram(s):
 if len(s) == 0:
 return [[]]
 result = []
anagrams = anagram(s[1:1])
for x in anagrams:
 for i in range(0, len(x) + 1):
 new_anagram = x[:i] + [s[0]] + x[i:]
 result.append(new_anagram)
return result
Declarative Anagrams
Declarative Anagrams

\texttt{logic> (fact (insert ?a ?r (?a . ?r)))}
Declarative Anagrams

```prolog
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
```
Declarative Anagrams

```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
       (insert ?a ?r ?s))
```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))
Declarative Anagrams (demo)

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

logic> (fact (anagram () ()()))
Declarative Anagrams

logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))
logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)
Declarative Anagrams (demo)

```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
       (insert ?a ?r ?s))

logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)
       (anagram ?r ?s))
```
Declarative Anagrams (demo)

```
logic> (fact (insert ?a ?r (?a . ?r)))
logic> (fact (insert ?a (?b . ?r) (?b . ?s))
        (insert ?a ?r ?s))

logic> (fact (anagram () ()))
logic> (fact (anagram (?a . ?r) ?b)
        (anagram ?r ?s)
        (insert ?a ?s ?b))

logic> (query (anagram ?s (s t a r)))
```
Palindromes
Palindromes
Palindromes

• A palindrome is a sequence that is the same when read backward and forward
Palindromes

• A palindrome is a sequence that is the same when read backward and forward
 • Examples: "racecar"
Palindromes

• A palindrome is a sequence that is the same when read backward and forward
 • Examples: "racecar", "senile felines"
Palindromes

• A palindrome is a sequence that is the same when read backward and forward
 • Examples: "racecar", "senile felines", "too hot to hoot"
Palindromes

- A palindrome is a sequence that is the same when read backward and forward
 - Examples: "racecar", "senile felines", "too hot to hoot"

\[
\text{logic> (fact (palindrome ?s)}
\]
Palindromes

- A palindrome is a sequence that is the same when read backward and forward
 - Examples: "racecar", "senile felines", "too hot to hoot"

logic> (fact (palindrome ?s)
 (reverse ?s ?s))
Palindromes

- A palindrome is a sequence that is the same when read backward and forward
 - Examples: "racecar", "senile felines", "too hot to hoot"

logic> (fact (palindrome ?s)
 (reverse ?s ?s))
logic> (fact (reverse () ()))
Palindromes

• A palindrome is a sequence that is the same when read backward and forward
 • Examples: "racecar", "senile felines", "too hot to hoot"

```logic
logic> (fact (palindrome ?s)
            (reverse ?s ?s))
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev))
```
Palindromes

- A palindrome is a sequence that is the same when read backward and forward
 - Examples: "racecar", "senile felines", "too hot to hoot"

logic> (fact (palindrome ?s)
 (reverse ?s ?s))
logic> (fact (reverse () ()())
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev))
Palindromes

- A palindrome is a sequence that is the same when read backward and forward
 - Examples: "racecar", "senile felines", "too hot to hoot"

  ```logic>
  (fact (palindrome ?s)
      (reverse ?s ?s))
  (fact (reverse () ()))
  (fact (reverse (?first . ?rest) ?rev)
      (reverse ?rest ?rest-rev)
      (append ?rest-rev (?first) ?rev))
  ```
Palindromes

• A palindrome is a sequence that is the same when read backward and forward
 • Examples: "racecar", "senile felines", "too hot to hoot"

```logic
(fact (palindrome ?s)
  (reverse ?s ?s))

(fact (reverse () ()))

(fact (reverse (?first . ?rest) ?rev)
  (reverse ?rest ?rest-rev)
  (append ?rest-rev (?first) ?rev))
```
Declarative Programming
Declarative Programming

- In declarative programming, we tell the computer what a solution looks like, rather than how to get the solution.
Declarative Programming

• In declarative programming, we tell the computer what a solution looks like, rather than how to get the solution.

• If we describe a solution in two different ways, will the computer take the same amount of time to compute a solution?
Declarative Programming

• In declarative programming, we tell the computer what a solution looks like, rather than how to get the solution.

• If we describe a solution in two different ways, will the computer take the same amount of time to compute a solution?
 • Probably not...
Reverse
Reverse

\[
\text{logic}> \ \text{(fact \ (reverse \ () \ ()))} \\
\text{logic}> \ \text{(fact \ (reverse \ (?first \ . \ ?rest) \ ?rev) \)} \\
\text{ } \ (reverse \ ?rest \ ?rest-rev) \\
\text{ } \ (append \ ?rest-rev \ (?first) \ ?rev))
\]
Reverse

```
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
  (reverse ?rest ?rest-rev)
  (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev))
```
Reverse

```
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
          (reverse ?rest ?rest-rev)
          (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
          (accrev ?rest (?first . ?acc) ?rev))
```
Reverse

\[
\text{logic}> \ (\text{fact} \ (\text{reverse} \ () \ ()))
\]

\[
\text{logic}> \ (\text{fact} \ (\text{reverse} \ (?\text{first} . \ ?\text{rest}) \ ?\text{rev})
\quad \text{(reverse} \ ?\text{rest} \ ?\text{rest-rev})
\quad \text{(append} \ ?\text{rest-rev} \ (?\text{first}) \ ?\text{rev}))
\]

\[
\text{logic}> \ (\text{fact} \ (\text{accrev} \ (?\text{first} . \ ?\text{rest}) \ ?\text{acc} \ ?\text{rev})
\quad \text{(accrev} \ ?\text{rest} \ (?\text{first} . \ ?\text{acc}) \ ?\text{rev}))
\quad \text{logic}> \ (\text{fact} \ (\text{accrev} \ () \ ?\text{acc} \ ?\text{acc})
\]
Reverse

logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
 (reverse ?rest ?rest-rev)
 (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
 (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)
Reverse

```
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
   (reverse ?rest ?rest-rev)
   (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
   (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)
   (accrev ?s () ?rev))
```
Reverse

```
logic> (fact (reverse () ()))
logic> (fact (reverse (?first . ?rest) ?rev)
  (reverse ?rest ?rest-rev)
  (append ?rest-rev (?first) ?rev))

logic> (fact (accrev (?first . ?rest) ?acc ?rev)
  (accrev ?rest (?first . ?acc) ?rev))
logic> (fact (accrev () ?acc ?acc))
logic> (fact (accrev ?s ?rev)
  (accrev ?s () ?rev))
```
Break!
Arithmetic
Number Representation
Number Representation

- Logic does not have numbers, but does have Scheme lists
Number Representation

- Logic does not have numbers, but does have Scheme lists
- Let's create our own number representation!
Number Representation

• Logic does not have numbers, but does have Scheme lists
• Let's create our own number representation!
 • We'll limit ourselves to non-negative integers
Number Representation

• Logic does not have numbers, but does have Scheme lists
• Let's create our own number representation!
 • We'll limit ourselves to non-negative integers
• We can represent the numbers
Number Representation

• Logic does not have numbers, but does have Scheme lists
• Let's create our own number representation!
 • We'll limit ourselves to non-negative integers
• We can represent the numbers
 • 0, 1, 2, 3, ... as
Number Representation

• Logic does not have numbers, but does have Scheme lists
• Let's create our own number representation!
 • We'll limit ourselves to non-negative integers
• We can represent the numbers
 • 0, 1, 2, 3, ... as
 • 0, (+ 1 0), (+ 1 (+ 1 0)), (+ 1 (+ 1 (+ 1 0))), ...
Number Representation

• Logic does not have numbers, but does have Scheme lists
• Let's create our own number representation!
 • We'll limit ourselves to non-negative integers
• We can represent the numbers
 • 0, 1, 2, 3, ... as
 • 0, (+ 1 0), (+ 1 (+ 1 0)), (+ 1 (+ 1 (+ 1 0))), ...
• This is still a **symbolic** representation! Logic doesn't know that these are Scheme expressions that would evaluate to that number
Addition
Addition

• Mathematical facts:
Addition

- Mathematical facts:
 - $0 + n = n$
Addition

• Mathematical facts:
 • $0 + n = n$
 • In order for $(x + 1) + y = (z + 1)$ to be true, $x + y = z$
Addition

• Mathematical facts:
 • 0 + n = n
 • In order for \((x + 1) + y = (z + 1)\) to be true, \(x + y = z\)

 \text{logic} \triangleright \text{(fact (+ 0 ?n ?n))}
Addition

• Mathematical facts:
 • 0 + n = n
 • In order for (x + 1) + y = (z + 1) to be true, x + y = z

logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z)))
Addition

• Mathematical facts:
 • \(0 + n = n\)
 • In order for \((x + 1) + y = (z + 1)\) to be true, \(x + y = z\)

```
logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
   (+ ?x ?y ?z))
```
Addition (demo)

- Mathematical facts:
 - \(0 + n = n\)
 - In order for \((x + 1) + y = (z + 1)\) to be true, \(x + y = z\)

```
logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
     (+ ?x ?y ?z))
```
Addition

- Mathematical facts:
 - \(0 + n = n\)
 - In order for \((x + 1) + y = (z + 1)\) to be true, \(x + y = z\)

```lisp
logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
           (+ ?x ?y ?z))
logic> (query (+
```
Addition

• Mathematical facts:
 • \(0 + n = n\)
 • In order for \((x + 1) + y = (z + 1)\) to be true, \(x + y = z\)

```logic
logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
    (+ ?x ?y ?z))
logic> (query (+
    (+ 1 (+ 1 (+ 1 0))))
```
Addition

• Mathematical facts:
 • $0 + n = n$
 • In order for $(x + 1) + y = (z + 1)$ to be true, $x + y = z$

```plaintext
logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
        (+ ?x ?y ?z))
logic> (query (+
              (+ 1 (+ 1 (+ 1 0))))
              (+ 1 (+ 1 0)))
```
Addition

• Mathematical facts:
 • $0 + n = n$
 • In order for $(x + 1) + y = (z + 1)$ to be true, $x + y = z$

```
logic> (fact (+ 0 ?n ?n))
logic> (fact (+ (+ 1 ?x) ?y (+ 1 ?z))
    (+ ?x ?y ?z))
logic> (query (+
    (+ 1 (+ 1 (+ 1 0)))
    (+ 1 (+ 1 0))
    ?z))
```
Multiplication
Multiplication

• Mathematical facts:
Multiplication

Mathematical facts:

$0 \times n = 0$
Multiplication

• Mathematical facts:
 • \(0 \times n = 0\)

\[
\text{logic}> (\text{fact} (* 0 \ ?n 0))
\]
Multiplication

• Mathematical facts:
 • $0 \times n = 0$
 • In order for $(x + 1) \times y = z$ to be true, $x \times y + y = z$

logic> (fact (* 0 ?n 0))
Multiplication

• Mathematical facts:
 • \(0 \times n = 0\)
 • In order for \((x + 1) \times y = z\) to be true, \(x \times y + y = z\)

logic\(>\) (fact (* 0 ?n 0))
logic\(>\) (fact (* (+ 1 ?x) ?y ?z))
Multiplication

• Mathematical facts:
 • $0 \times n = 0$
 • In order for $(x + 1) \times y = z$ to be true, $x \times y + y = z$

logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
 (+ ?xy ?y ?z))
Multiplication

- Mathematical facts:
 - $0 \times n = 0$
 - In order for $(x + 1) \times y = z$ to be true, $x \times y + y = z$

```
logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
     (+ ?xy ?y ?z)
     (* ?x ?y ?xy))
```
Multiplication

• Mathematical facts:
 • $0 \times n = 0$
 • In order for $(x + 1) \times y = z$ to be true, $x \times y + y = z$

```scheme
logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
  (+ ?xy ?y ?z)
  (* ?x ?y ?xy))
```
Multiplication

- Mathematical facts:
 - $0 \times n = 0$
 - In order for $(x + 1) \times y = z$ to be true, $x \times y + y = z$

```
logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
  (+ ?xy ?y ?z)
  (* ?x ?y ?xy))
logic> (query (* (+ 1 (+ 1 (+ 1 0))) ?y)
```
Multiplication (demo)

- Mathematical facts:
 - $0 \times n = 0$
 - In order for $(x + 1) \times y = z$ to be true, $x \times y + y = z$

```plaintext
logic> (fact (* 0 ?n 0))
logic> (fact (* (+ 1 ?x) ?y ?z)
  (+ ?xy ?y ?z)
  (* ?x ?y ?xy))
logic> (query (* (+ 1 (+ 1 (+ 1 (+ 1 0)))) ?y
  (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))))))
```
Subtraction and Division
Subtraction and Division

• Mathematical facts:
Subtraction and Division

• Mathematical facts:
 • Subtraction is the inverse of addition
Subtraction and Division

• Mathematical facts:
 • Subtraction is the inverse of addition
 • In order for $x - y = z$, $y + z = x$
Subtraction and Division

• Mathematical facts:
 • Subtraction is the inverse of addition
 • In order for $x - y = z$, $y + z = x$

logic> (fact (− ?x ?y ?z))
Subtraction and Division

• Mathematical facts:
 • Subtraction is the inverse of addition
 • In order for $x - y = z$, $y + z = x$

```prolog
logic> (fact (− ?x ?y ?z)
  (+ ?y ?z ?x))
```
Subtraction and Division

• Mathematical facts:
 • Subtraction is the inverse of addition
 • In order for $x - y = z$, $y + z = x$
 • Division is the inverse of multiplication

```
logic> (fact (− ?x ?y ?z)
  (+ ?y ?z ?x))
```
Subtraction and Division

• Mathematical facts:
 • Subtraction is the inverse of addition
 • In order for $x - y = z$, $y + z = x$
 • Division is the inverse of multiplication
 • In order for $x / y = z$, $y * z = x$ (assuming x is divisible by y)

logic> (fact (– ?x ?y ?z)
 (+ ?y ?z ?x))
Subtraction and Division

• Mathematical facts:
 • Subtraction is the inverse of addition
 • In order for \(x - y = z \), \(y + z = x \)
 • Division is the inverse of multiplication
 • In order for \(x / y = z \), \(y \cdot z = x \) (assuming \(x \) is divisible by \(y \))

\[
\text{logic> (fact (− ?x ?y ?z)}
\quad (+ ?y ?z ?x))
\text{logic> (fact (/ ?x ?y ?z)}
\]
Subtraction and Division

• Mathematical facts:
 • Subtraction is the inverse of addition
 • In order for \(x - y = z \), \(y + z = x \)
 • Division is the inverse of multiplication
 • In order for \(x / y = z \), \(y \times z = x \) (assuming \(x \) is divisible by \(y \))

```
logic> (fact (- ?x ?y ?z)
    (+ ?y ?z ?x))
logic> (fact (/ ?x ?y ?z)
    (* ?y ?z ?x)))
```
Subtraction and Division

- Mathematical facts:
 - Subtraction is the inverse of addition
 - In order for $x - y = z$, $y + z = x$
 - Division is the inverse of multiplication
 - In order for $x / y = z$, $y * z = x$ (assuming x is divisible by y)

```
logic> (fact (− ?x ?y ?z)
     (+ ?y ?z ?x))
logic> (fact (/ ?x ?y ?z)
     (* ?y ?z ?x))
```
Arithmetic
Arithmetic

• We've implemented the four basic arithmetic operations!
Arithmetic

• We've implemented the four basic arithmetic operations!
Arithmetic

• We've implemented the four basic arithmetic operations!
• We can now ask Logic about all the different ways to compute the number 6
Arithmetic

• We've implemented the four basic arithmetic operations!

• We can now ask Logic about all the different ways to compute the number 6

```
logic> (query (?op ?arg1 ?arg2
       (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))))
```
Summary
Summary

• Some problems can be solved more easily or concisely with declarative programming than imperative programming
Summary

• Some problems can be solved more easily or concisely with declarative programming than imperative programming.

• However, just because the computer is the one solving the problem doesn't mean that we can write any declarative program and it will "just work".
Summary

• Some problems can be solved more easily or concisely with declarative programming than imperative programming

• However, just because the computer is the one solving the problem doesn't mean that we can write any declarative program and it will "just work"

• As declarative programmers, we (eventually) should understand how the underlying problem solver works
Summary

• Some problems can be solved more easily or concisely with declarative programming than imperative programming

• However, just because the computer is the one solving the problem doesn't mean that we can write any declarative program and it will "just work"

• As declarative programmers, we (eventually) should understand how the underlying problem solver works

• This semester, just focus on writing declarative programs; no need to worry about the underlying solver yet!