Lecture 26: Parallelism

Brian Hou
August 4, 2016
Announcements
Announcements

• Project 4 is due tomorrow (8/5)
Announcements

• Project 4 is due tomorrow (8/5)
 • Submit by today for 1 EC point
Announcements

- Project 4 is due tomorrow (8/5)
 - Submit by today for 1 EC point
- Final Review tomorrow (8/5) from 11–12:30pm in 2050 VLSB
Announcements

• Project 4 is due tomorrow (8/5)
 • Submit by today for 1 EC point
• Final Review tomorrow (8/5) from 11–12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
Announcements

• Project 4 is due tomorrow (8/5)
 • Submit by today for 1 EC point
• Final Review tomorrow (8/5) from 11–12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
Announcements

• Project 4 is due tomorrow (8/5)
 • Submit by today for 1 EC point
• Final Review tomorrow (8/5) from 11–12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9
Announcements

- Project 4 is due tomorrow (8/5)
 - Submit by today for 1 EC point
- Final Review tomorrow (8/5) from 11–12:30pm in 2050 VLSB
 - Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
- Ants composition revisions due Saturday (8/6)
- Scheme Recursive Art Contest is open! Submissions due 8/9
- Potluck II on 8/10! 5–8pm (or later) in Wozniak Lounge
Announcements

• Project 4 is due tomorrow (8/5)
 • Submit by today for 1 EC point
• Final Review tomorrow (8/5) from 11–12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9
• Potluck II on 8/10! 5–8pm (or later) in Wozniak Lounge
 • Bring food and board games!
Announcements

• Project 4 is due tomorrow (8/5)
 • Submit by today for 1 EC point
• Final Review tomorrow (8/5) from 11-12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5-8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9
• Potluck II on 8/10! 5–8pm (or later) in Wozniak Lounge
 • Bring food and board games!
• Homework 10 will be due 8/9
Announcements

• Project 4 is due tomorrow (8/5)
 • Submit by today for 1 EC point
• Final Review tomorrow (8/5) from 11–12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9
• **Potluck II** on 8/10! 5–8pm (or later) in Wozniak Lounge
 • Bring food and board games!
• Homework 10 will be due 8/9
• Homework 11 and 12 will be due 8/10 and 8/12
Announcements

• Project 4 is due tomorrow (8/5)
 • Submit by today for 1 EC point
• Final Review tomorrow (8/5) from 11–12:30pm in 2050 VLSB
 • Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Ants composition revisions due Saturday (8/6)
• Scheme Recursive Art Contest is open! Submissions due 8/9
• Potluck II on 8/10! 5–8pm (or later) in Wozniak Lounge
 • Bring food and board games!
• Homework 10 will be due 8/9
• Homework 11 and 12 will be due 8/10 and 8/12
 • Last two of the three extra credit surveys
Roadmap

- Introduction
- Functions
- Data
- Mutability
- Objects
- Interpretation
- Paradigms
- Applications
• This week (Paradigms), the goals are:
• This week (Paradigms), the goals are:
 • To study examples of paradigms that are very different from what we have seen so far
This week (Paradigms), the goals are:

- To study examples of paradigms that are very different from what we have seen so far
- To expand our definition of what counts as programming
Big Data
Facebook Lexicon
Facebook Lexicon

Search Lexicon: party tonight, hangover
Suggestions: xoxo, xoxoxo | eid | skiing, beach | clinton, obama

party tonight hangover
Facebook Lexicon

Search Lexicon: party tonight, hangover
Suggestions: xoxo, xoxoxo | eid | skiing, beach | clinton, obama

party tonight hangover

(discontinued)
Examples of Big Data

Examples from Anthony Joseph
Examples of Big Data

- There's a lot of data out there!
Examples of Big Data

- There's a lot of data out there!
 - Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
Examples of Big Data

• There's a lot of data out there!
 • Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
 • 1,000 genomes project: 200 Terabytes
Examples of Big Data

- There's a lot of data out there!
 - Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
 - 1,000 genomes project: 200 Terabytes
 - Google web index: 10+ Petabytes (10,000,000 Gigabytes!!)
Examples of Big Data

• There's a lot of data out there!
 • Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
 • 1,000 genomes project: 200 Terabytes
 • Google web index: 10+ Petabytes (10,000,000 Gigabytes!!)
• These datasets are too large to fit on a single computer
Examples of Big Data

- There's a lot of data out there!
 - Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
 - 1,000 genomes project: 200 Terabytes
 - Google web index: 10+ Petabytes (10,000,000 Gigabytes!!)
- These datasets are too large to fit on a single computer
- Reading 1 Terabyte from disk: 3 hours (100 MB per second)

Examples from Anthony Joseph
Distributed Algorithms
Distributed Algorithms

- If data can't be stored on a single machine, then our programs can't run on a single machine
Distributed Algorithms

• If data can't be stored on a single machine, then our programs can't run on a single machine

• Therefore, we need to develop distributed algorithms to distribute and coordinate work between worker machines
Distributed Algorithms

- If data can't be stored on a single machine, then our programs can't run on a single machine.
- Therefore, we need to develop distributed algorithms to distribute and coordinate work between worker machines.
- Machines can communicate, but perform computations in their own isolated environment.
Computers for Big Data
Computers for Big Data

• Typical hardware for big data applications:
Computers for Big Data

• Typical hardware for big data applications:
 • Consumer-grade hard disks and processors
Computers for Big Data

• Typical hardware for big data applications:
 • Consumer-grade hard disks and processors
 • Independent computers are stored in racks
Computers for Big Data

• Typical hardware for big data applications:
 • Consumer-grade hard disks and processors
 • Independent computers are stored in racks

Facebook datacenter (2014)
Computers for Big Data

- Typical hardware for big data applications:
 - Consumer-grade hard disks and processors
 - Independent computers are stored in racks
- Concerns: heat, power, monitoring, networking
Computers for Big Data

• Typical hardware for big data applications:
 • Consumer-grade hard disks and processors
 • Independent computers are stored in racks
• Concerns: heat, power, monitoring, networking
• When using many computers, some will fail!

Facebook datacenter (2014)
Distributed Algorithms
Distributed Algorithms

- If data can't be stored on a single machine, then our programs can't run on a single machine
- Therefore, we need to develop distributed algorithms to distribute and coordinate work between worker machines
- Machines can communicate, but perform computations in their own isolated environment
Distributed Algorithms

• If data can't be stored on a single machine, then our programs can't run on a single machine

• Therefore, we need to develop _distributed algorithms_ to distribute and coordinate work between worker machines

• Machines can communicate, but perform computations in their own isolated environment

• Machines and networks occasionally fail!
Distributed Algorithms

• If data can't be stored on a single machine, then our programs can't run on a single machine
• Therefore, we need to develop distributed algorithms to distribute and coordinate work between worker machines
• Machines can communicate, but perform computations in their own isolated environment
• Machines and networks occasionally fail!
 • Lost work must be recomputed
Distributed Algorithms

• If data can't be stored on a single machine, then our programs can't run on a single machine.

• Therefore, we need to develop distributed algorithms to distribute and coordinate work between worker machines.

• Machines can communicate, but perform computations in their own isolated environment.

• Machines and networks occasionally fail!
 • Lost work must be recomputed.

• Slow workers should be detected and their task should be given to a different worker.
Distributed Algorithms

- If data can't be stored on a single machine, then our programs can't run on a single machine
- Therefore, we need to develop *distributed algorithms* to distribute and coordinate work between worker machines
- Machines can communicate, but perform computations in their own isolated environment
- Machines and networks occasionally fail!
 - Lost work must be recomputed
- Slow workers should be detected and their task should be given to a different worker
- This is getting complicated...
Apache Spark
Apache Spark

• Apache Spark is a data processing system that provides a simple interface for large data
Apache Spark

- Apache Spark is a data processing system that provides a simple interface for large data
 - Developed right here at Berkeley in 2010!
Apache Spark

- Apache Spark is a data processing system that provides a simple interface for large data
 - Developed right here at Berkeley in 2010!
- A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
Apache Spark

• Apache Spark is a data processing system that provides a simple interface for large data
 • Developed right here at Berkeley in 2010!
• A Resilient Distributed Dataset (RDD) is a collection of values or key–value pairs
• Supports common sequence operations: map, filter, reduce
Apache Spark

• Apache Spark is a data processing system that provides a simple interface for large data
 • Developed right here at Berkeley in 2010!
• A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
• Supports common sequence operations: map, filter, reduce
 • These operations can be performed on RDDs that are partitioned across machines
Apache Spark

- Apache Spark is a data processing system that provides a simple interface for large data
 - Developed right here at Berkeley in 2010!
- A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
- Supports common sequence operations: map, filter, reduce
 - These operations can be performed on RDDs that are partitioned across machines
- Idea: Working with distributed data is complicated. **Use abstraction** to hide the fact that the data is distributed!
Apache Spark Execution Model
Apache Spark Execution Model

- An RDD is distributed in partitions to *worker nodes*
Apache Spark Execution Model

- An RDD is distributed in partitions to worker nodes
- A driver program defines transformations and actions
Apache Spark Execution Model

- An RDD is distributed in partitions to worker nodes
- A *driver program* defines transformations and actions
 - Transformations: Create a new RDD from an existing RDD
Apache Spark Execution Model

• An RDD is distributed in partitions to worker nodes
• A driver program defines transformations and actions
 • Transformations: Create a new RDD from an existing RDD
 • Actions: Summarize RDD into one value (e.g. sum, take)
Apache Spark Execution Model

- An RDD is distributed in partitions to worker nodes
- A driver program defines transformations and actions
 - Transformations: Create a new RDD from an existing RDD
 - Actions: Summarize RDD into one value (e.g. sum, take)
- A cluster manager assigns tasks to individual worker nodes to carry them out
Apache Spark Execution Model

- An RDD is distributed in partitions to worker nodes
- A driver program defines transformations and actions
 - Transformations: Create a new RDD from an existing RDD
 - Actions: Summarize RDD into one value (e.g. sum, take)
- A cluster manager assigns tasks to individual worker nodes to carry them out
- Worker nodes perform computation and communicate values to each other
Apache Spark Execution Model

• An RDD is distributed in partitions to worker nodes
• A driver program defines transformations and actions
 • Transformations: Create a new RDD from an existing RDD
 • Actions: Summarize RDD into one value (e.g. sum, take)
• A cluster manager assigns tasks to individual worker nodes to carry them out
• Worker nodes perform computation and communicate values to each other
• Final results are communicated back to the driver program
The Last Words of Shakespeare
The Last Words of Shakespeare

- A *driver program* defines transformations and actions
- A *cluster manager* assigns tasks to individual *worker nodes*
- Worker nodes perform computation and communicate values to each other
Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.

From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.

The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, nought could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
The Last Words of Shakespeare

- A driver program defines transformations and actions
- A cluster manager assigns tasks to individual worker nodes
- Worker nodes perform computation and communicate values to each other

Othello

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, nought could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
The Last Words of Shakespeare

• A **driver program** defines transformations and actions
• A **cluster manager** assigns tasks to individual **worker nodes**
• Worker nodes perform computation and communicate values to each other
The Last Words of Shakespeare

• A SparkContext gives access to the cluster manager
The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager

```python
>>> sc
<pyspark.context.SparkContext ...>
```
The Last Words of Shakespeare

• A SparkContext gives access to the cluster manager
• An RDD can be constructed from the lines of a text file

```python
>>> sc
<pyspark.context.SparkContext ...>
```
The Last Words of Shakespeare

• A SparkContext gives access to the cluster manager
• An RDD can be constructed from the lines of a text file

```python
>>> sc
< pyspark.context.SparkContext ... >
>>> shakes = sc.textFile('shakespeare.txt')
```
The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file
- The sortBy transformation and take action are methods

```python
>>> sc
<pyspark.context.SparkContext ...>
>>> shakes = sc.textFile('shakespeare.txt')
```
The Last Words of Shakespeare

• A SparkContext gives access to the cluster manager
• An RDD can be constructed from the lines of a text file
• The sortBy transformation and take action are methods

```python
>>> sc
<pyspark.context.SparkContext ...>
>>> shakes = sc.textFile('shakespeare.txt')
>>> shakes.sortBy(lambda line: line, False)
```
The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file
- The sortBy transformation and take action are methods

```python
>>> sc
< pyspark.context.SparkContext ... >
>>> shakes = sc.textFile( 'shakespeare.txt' )
>>> shakes.sortBy( lambda line: line, False )
... .take( 2 )
```
The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file
- The sortBy transformation and take action are methods

```python
>>> sc
< pyspark.context.SparkContext ... >
>>> shakes = sc.textFile('shakespeare.txt')
>>> shakes.sortBy(lambda line: line, False)
... .take(2)
['you shall...', 'yet, a...']
```
The Last Words of Shakespeare

- A SparkContext gives access to the cluster manager
- An RDD can be constructed from the lines of a text file
- The sortBy transformation and take action are methods

```python
>>> sc
< pyspark.context.SparkContext ... >
>>> shakes = sc.textFile( ' shakespeare.txt ' )
>>> shakes.sortBy( lambda line: line, False )
... .take(2)
['you shall...', 'yet, a...']
```
What Does Apache Spark Provide?
What Does Apache Spark Provide?

- **Fault tolerance**: A machine or hard drive might crash
What Does Apache Spark Provide?

• **Fault tolerance:** A machine or hard drive might crash
 • The cluster manager automatically re-runs failed tasks
What Does Apache Spark Provide?

- **Fault tolerance**: A machine or hard drive might crash
 - The cluster manager automatically re-runs failed tasks
- **Speed**: Some machine might be slow because it's overloaded
What Does Apache Spark Provide?

- **Fault tolerance**: A machine or hard drive might crash
 - The cluster manager automatically re-runs failed tasks
- **Speed**: Some machine might be slow because it's overloaded
 - The cluster manager can run multiple copies of a task and keep the result of the one that finishes first
What Does Apache Spark Provide?

- **Fault tolerance**: A machine or hard drive might crash
 - The cluster manager automatically re-runs failed tasks
- **Speed**: Some machine might be slow because it's overloaded
 - The cluster manager can run multiple copies of a task and keep the result of the one that finishes first
- **Monitoring**: Will my job finish before dinner?!?
What Does Apache Spark Provide?

- **Fault tolerance**: A machine or hard drive might crash
 - The cluster manager automatically re-runs failed tasks
- **Speed**: Some machine might be slow because it's overloaded
 - The cluster manager can run multiple copies of a task and keep the result of the one that finishes first
- **Monitoring**: Will my job finish before dinner?!?
 - The cluster manager provides a web-based interface describing jobs
What Does Apache Spark Provide?

• **Fault tolerance:** A machine or hard drive might crash
 • The cluster manager automatically re-runs failed tasks

• **Speed:** Some machine might be slow because it's overloaded
 • The cluster manager can run multiple copies of a task and keep the result of the one that finishes first

• **Monitoring:** Will my job finish before dinner?!?
 • The cluster manager provides a web-based interface describing jobs

• **Abstraction!**
MapReduce
MapReduce Applications
MapReduce Applications

• An important early distributed processing system was MapReduce, published by Google in 2004
MapReduce Applications

• An important early distributed processing system was MapReduce, published by Google in 2004

• Simple structure that happened to capture many common data processing tasks
MapReduce Applications

- An important early distributed processing system was MapReduce, published by Google in 2004
- Simple structure that happened to capture many common data processing tasks
 - Step 1: Each element in an input collection produces zero or more key-value pairs (map)
MapReduce Applications

- An important early distributed processing system was MapReduce, published by Google in 2004.
- Simple structure that happened to capture many common data processing tasks.
 - Step 1: Each element in an input collection produces zero or more key-value pairs (map).
 - Step 2: All key-value pairs that share a key are aggregated together (shuffle).
MapReduce Applications

- An important early distributed processing system was MapReduce, published by Google in 2004.
- Simple structure that happened to capture many common data processing tasks.
 - Step 1: Each element in an input collection produces zero or more key-value pairs (map).
 - Step 2: All key-value pairs that share a key are aggregated together (shuffle).
 - Step 3: All the values for a key are processed as a sequence (reduce).
MapReduce Applications

• An important early distributed processing system was MapReduce, published by Google in 2004
• Simple structure that happened to capture many common data processing tasks
 • Step 1: Each element in an input collection produces zero or more key-value pairs (map)
 • Step 2: All key-value pairs that share a key are aggregated together (shuffle)
 • Step 3: All the values for a key are processed as a sequence (reduce)
• Early applications: indexing web pages, computing PageRank
MapReduce Evaluation Model
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model

• Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs
MapReduce Evaluation Model

• Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs

Google MapReduce
Is a Big Data framework
For batch processing

mapper

o: 2
a: 1
u: 1
e: 3
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs

Google MapReduce
Is a Big Data framework
For batch processing

mapper

Variables:
- o: 2
- a: 1
- u: 1
- e: 3
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs

Google MapReduce
Is a Big Data framework
For batch processing

mapper

i: 1
a: 4
e: 1
o: 1

o: 2
a: 1
u: 1
e: 3
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs

Google MapReduce
Is a Big Data framework
For batch processing

mapper

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

o: 2
a: 1
u: 1
e: 3
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs

Google MapReduce
Is a Big Data framework
For batch processing

mapper

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>o</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>i</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

mapper

<table>
<thead>
<tr>
<th>a</th>
<th>o</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>o</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs
- Reduce step: For each intermediate key, apply a reducer function to accumulate all values associated with that key

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model

- Map step: Apply a mapper function to all inputs, emitting intermediate key-value pairs
- Reduce step: For each intermediate key, apply a reducer function to accumulate all values associated with that key
 - All key-value pairs with the same key are processed together

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model
• Reduce step: For each intermediate key, apply a reducer function to accumulate all values associated with that key
MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer function to accumulate all values associated with that key.
 - All key-value pairs with the same key are processed together.
MapReduce Evaluation Model

• Reduce step: For each intermediate key, apply a reducer function to accumulate all values associated with that key
 • All key-value pairs with the same key are processed together

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer function to accumulate all values associated with that key.
 - All key-value pairs with the same key are processed together.

Google MapReduce
Is a Big Data framework
For batch processing

_mapper

_reducer

| a: 1 |
| o: 2 |
| e: 1 |
| i: 1 |

| o: 2 |
| a: 1 |
| u: 1 |
| e: 3 |
MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer function to accumulate all values associated with that key.
 - All key-value pairs with the same key are processed together.

Google MapReduce
Is a Big Data framework
For batch processing

mapper

reducer

- a: 4
- a: 1
- a: 1
- e: 1
- i: 1

- o: 2
- a: 4
- e: 1
- o: 1

- a: 1
- o: 2
- e: 1
- i: 1

...
MapReduce Evaluation Model

- Reduce step: For each intermediate key, apply a reducer function to accumulate all values associated with that key
 - All key-value pairs with the same key are processed together

Google MapReduce
Is a Big Data framework
For batch processing

```
| a: 4 |
| a: 1 |
| a: 1 |
| e: 1 |
```

```
| a: 6 |
```

```
| i: 1 |
| o: 2 |
| e: 1 |
| i: 1 |
```

```
| o: 2 |
| a: 1 |
| u: 1 |
| e: 3 |
```
MapReduce on Apache Spark
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

data.flatMap(f)
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

data.flatMap(fn)

data.reduceByKey(fn)
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

```python
Call Expression

data.flatMap(fn)

data.reduceByKey(fn)
```
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

Call Expression Data

data.flatMap(fn)

data.reduceByKey(fn)
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

Call Expression Data fn Input

data.\texttt{flatMap}(fn)

data.\texttt{reduceByKey}(fn)
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.\texttt{flatMap}(\texttt{fn})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data.\texttt{reduceByKey}(\texttt{fn})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

data.\texttt{flatMap}(fn)

data.\texttt{reduceByKey}(fn)
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td></td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data.flatMap(fn)</code></td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td><code>data.reduceByKey(fn)</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.\texttt{flatMap}(fn)</td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td>data.\texttt{reduceByKey}(fn)</td>
<td>Key-value pairs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td>Key-value pairs</td>
<td>Two values</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td>Key-value pairs</td>
<td>Two values</td>
<td>One value</td>
<td></td>
</tr>
</tbody>
</table>
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td>Key-value pairs</td>
<td>Two values</td>
<td>One value</td>
<td>One key-value pair for each unique key</td>
</tr>
</tbody>
</table>
MapReduce on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td>Key-value pairs</td>
<td>Two values</td>
<td>One value</td>
<td>One key-value pair for each unique key</td>
</tr>
</tbody>
</table>
Summary

- Some problems are too big for one computer to solve!
Summary

• Some problems are too big for one computer to solve!

• However, distributed programming comes with its own issues
Summary

• Some problems are too big for one computer to solve!

• However, distributed programming comes with its own issues

• We can use abstractions (such as Apache Spark) to manage some of the complexity that is inevitable when running programs on many machines