Announcements

• Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Scheme Recursive Art submissions due today (8/9)!
• Potluck II tomorrow (8/10)! 5–8pm in Wozniak Lounge
• Homework 10 is due today (8/9)
 • AutoStyle EC portion due 8/10, last part due 8/11
• Homework 11 and 12 will be due 8/10 and 8/12
 • Last two of the three extra credit surveys
 • Vote for your favorite Recursive Art submissions!
• Check your grades! Details on Piazza, regrades close 8/10
Roadmap

Introduction
Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications

• This week (Applications), the goals are:
 • To go beyond CS 61A and see examples of what comes next
 • To wrap up CS 61A!
Computer Security
Computer Security

• A subfield of computer science with two main goals:
 • Allow intended use of computer systems
 • Prevent unwanted use that may cause harm

• Why should you care?
 • The Internet has a lot of information about you...

• Today, we'll look at two problems:
 • Cryptography: secure communication over insecure communication channels
 • Injection Attacks
Today's Special Guests!

Alice

The Adversary
(Eve or Mallory)

Bob
Cryptography
Cryptography

• Three main goals: confidentiality, integrity, authenticity

• Today, we'll focus on confidentiality

Confidentiality: prevent adversaries from reading private communications

• Can Alice and Bob communicate in a way that even an eavesdropper Eve can't understand what they're saying?
One of the first attempts to encrypt a message

- Was used by Roman dictator Julius Caesar

Alice and Bob agree on a secret number (key) between 0 and 25 to shift the alphabet

- For example, if the number is 2 then 'A' becomes 'C', 'B' becomes 'D', ..., 'Y' becomes 'A', 'Z' becomes 'B'

http://www.cryptoclub.org/tools/caesar_cipher.php
Observation: There are only 26 possible keys

Observation: Computers are fast

Observation: Letters don't appear in English with the exact same frequency

For example, 'E' appears more often than 'Z'
The Enigma Machine

- Used by the German military in World War II
- First broken by Polish mathematicians in 1932
- Information gained by the Allied forces is estimated to have shortened fighting by two years
- Implemented a progressive substitution cipher (e.g. different shift for each letter of the message)
Better Cryptography

• This will require a bit of math, but the detailed steps aren't particularly important

• From here onward, we'll represent a message with a number m, rather than a string of characters

• Main idea: It is feasible to find three large numbers e, d, and n such that $(m^e)^d = m \pmod{n}$
The RSA Algorithm

• RSA is an example of *public-key cryptography*

 • The public key is known to everyone and is used to encrypt messages for the user

 • The private key is only known by the user and is the only way to decrypt a message

 • This is also known as *asymmetric cryptography*: the message sender and recipient have two different keys

• Main idea: It is feasible to find three large numbers e, d, and n such that $(m^e)^d = m \mod n$

• Public key: e and n ("modulus")

• Private key: d
Suppose that Bob wants to send a message \(m \) to Alice

- He can encrypt a message by computing \(c = m^e \pmod{n} \)
- Everyone knows that Alice's public key is \(e \) and \(n \)
- She can decrypt his message by computing \(c^d = (m^e)^d = m \pmod{n} \)
- Only Alice knows her private key \(d \)
Breaking RSA

- Eve needs to compute d to decrypt the message
- e, d, and n aren't just three arbitrarily chosen numbers!
 - $n = pq$, where p and q are two very large primes (~2^{1024})
- For RSA encryption and decryption to work, $ed \equiv 1 \pmod{(p-1)*(q-1)}$ (Euler's totient theorem)
- As far as we know, computing d means that we have to
 1. Factor n into p and q
 2. Solve $ed \equiv 1 \pmod{(p-1)*(q-1)}$ for d
- It turns out that Step 2 is easy and Step 1 is hard!
- The security of RSA relies on factoring being difficult
Factoring is (Maybe) Hard

• Quick! Factor 561!

• There is no known efficient factoring algorithm

• Researchers spent 2007–2009 on factoring a 768-bit modulus (232 digits)
 • It took the equivalent of almost 2000 years of computing

• Factoring a 1024-bit RSA modulus would be 1000x harder, but could happen in the next decade (2019 is coming up!)
Factoring Complexity

• When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number n (i.e. $\log_2 n$)

• Factoring is in NP: the answer can be verified by multiplying, which takes polynomial time

• We don't know if factoring is in P: the best algorithms for factoring are better than exponential but worse than polynomial

• Quantum computers can factor large numbers in polynomial time with Shor's algorithm

 • But their most recent breakthrough was factoring 21, so...
Applications of RSA

• For now (and for many years to come), RSA is secure

• Many protocols rely on RSA today

 • SSH (how to connect securely to the lab computers)
 • SSL/TLS (the "S" in "HTTPS", how to connect securely to Facebook, etc.)
Break!
Injection Attacks
Compromising Web Servers

• What could you do if you controlled one of Facebook's servers?
• Steal sensitive data (e.g. data from many users)
• Change server data (e.g. affect users)
• Gateway to enabling attacks on users
• Impersonation (of users to servers, or vice versa)
Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
- General attack structure:
 - Attacker user provides some bad input
 - Web server does not check input format
 - Enables attacker to execute arbitrary code on the server

(demo)
Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm.
- Cryptography studies how we can communicate with others securely.
- As programmers, we must be mindful of security best practices when developing applications.
 - Even then, it might not be enough!
- CS 161 (Computer Security) goes into much more depth.
- CS 261 and CS 276 are the graduate-level security and cryptography classes.