Lecture 28: Computer Security

Brian Hou
August 9, 2016

Many slides are adapted from CS 161 (Computer Security)
Announcements
Announcements

• Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
Announcements

• Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Scheme Recursive Art submissions due today (8/9)!
Announcements

• Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Scheme Recursive Art submissions due today (8/9)!
• Potluck II tomorrow (8/10)! 5–8pm in Wozniak Lounge
Announcements

• Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Scheme Recursive Art submissions due today (8/9)!
• Potluck II tomorrow (8/10)! 5–8pm in Wozniak Lounge
• Homework 10 is due today (8/9)
Announcements

• Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Scheme Recursive Art submissions due today (8/9)!
• Potluck II tomorrow (8/10)! 5–8pm in Wozniak Lounge
• Homework 10 is due today (8/9)
 • AutoStyle EC portion due 8/10, last part due 8/11
Announcements

- Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!
- Potluck II tomorrow (8/10)! 5–8pm in Wozniak Lounge
- Homework 10 is due today (8/9)
 - AutoStyle EC portion due 8/10, last part due 8/11
- Homework 11 and 12 will be due 8/10 and 8/12
Announcements

• Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Scheme Recursive Art submissions due today (8/9)!
• Potluck II tomorrow (8/10)! 5–8pm in Wozniak Lounge
• Homework 10 is due today (8/9)
 • AutoStyle EC portion due 8/10, last part due 8/11
• Homework 11 and 12 will be due 8/10 and 8/12
 • Last two of the three extra credit surveys
Announcements

- Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
- Scheme Recursive Art submissions due today (8/9)!
- Potluck II tomorrow (8/10)! 5–8pm in Wozniak Lounge
- Homework 10 is due today (8/9)
 - AutoStyle EC portion due 8/10, last part due 8/11
- Homework 11 and 12 will be due 8/10 and 8/12
 - Last two of the three extra credit surveys
 - Vote for your favorite Recursive Art submissions!
Announcements

• Final Exam on Friday (8/12) from 5–8pm in 155 Dwinelle
• Scheme Recursive Art submissions due today (8/9)!
• Potluck II tomorrow (8/10)! 5–8pm in Wozniak Lounge
• Homework 10 is due today (8/9)
 • AutoStyle EC portion due 8/10, last part due 8/11
• Homework 11 and 12 will be due 8/10 and 8/12
 • Last two of the three extra credit surveys
 • Vote for your favorite Recursive Art submissions!
• Check your grades! Details on Piazza, regrades close 8/10
This week (Applications), the goals are:
Roadmap

Introduction
Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications

• This week (Applications), the goals are:
 • To go beyond CS 61A and see examples of what comes next
This week (Applications), the goals are:

- To go beyond CS 61A and see examples of what comes next
- To wrap up CS 61A!
Computer Security
Computer Security
Computer Security

• A subfield of computer science with two main goals:
Computer Security

- A subfield of computer science with two main goals:
 - Allow intended use of computer systems
Computer Security

- A subfield of computer science with two main goals:
 - Allow intended use of computer systems
 - Prevent unwanted use that may cause harm
Computer Security

- A subfield of computer science with two main goals:
 - Allow intended use of computer systems
 - Prevent unwanted use that may cause harm
- Why should you care?
Computer Security

• A subfield of computer science with two main goals:
 • Allow intended use of computer systems
 • Prevent unwanted use that may cause harm
• Why should you care?
 • The Internet has a lot of information about you...
Computer Security

• A subfield of computer science with two main goals:
 • Allow intended use of computer systems
 • Prevent unwanted use that may cause harm
• Why should you care?
 • The Internet has a lot of information about you...
• Today, we'll look at two problems:
Computer Security

• A subfield of computer science with two main goals:
 • Allow intended use of computer systems
 • Prevent unwanted use that may cause harm

• Why should you care?
 • The Internet has a lot of information about you...

• Today, we'll look at two problems:
 • Cryptography: secure communication over insecure communication channels
Computer Security

• A subfield of computer science with two main goals:
 • Allow intended use of computer systems
 • Prevent unwanted use that may cause harm
• Why should you care?
 • The Internet has a lot of information about you...
• Today, we'll look at two problems:
 • Cryptography: secure communication over insecure communication channels
 • Injection Attacks
Today's Special Guests!
Today's Special Guests!

Alice
Today's Special Guests!

Alice

Bob
Today's Special Guests!

Alice

Bob

The Adversary
Today's Special Guests!

Alice

Bob

The Adversary
(Eve or Mallory)
Cryptography
Cryptography
Cryptography

- Three main goals: confidentiality, integrity, authenticity
• Three main goals: confidentiality, integrity, authenticity
• Today, we'll focus on confidentiality
Cryptography

- Three main goals: confidentiality, integrity, authenticity
- Today, we'll focus on confidentiality
- Confidentiality: prevent adversaries from reading private communications
Cryptography

• Three main goals: confidentiality, integrity, authenticity
• Today, we'll focus on confidentiality

Confidentiality: prevent adversaries from reading private communications
 • Can Alice and Bob communicate in a way that even an eavesdropper Eve can't understand what they're saying?
Cryptography

• Three main goals: confidentiality, integrity, authenticity
• Today, we'll focus on confidentiality
• Confidentiality: prevent adversaries from reading private communications
 • Can Alice and Bob communicate in a way that even an eavesdropper Eve can't understand what they're saying?
The Caesar Cipher

http://www.cryptoclub.org/tools/caesar_cipher.php
The Caesar Cipher

• One of the first attempts to encrypt a message

http://www.cryptoclub.org/tools/caesar_cipher.php
The Caesar Cipher

- One of the first attempts to encrypt a message
 - Was used by Roman dictator Julius Caesar

http://www.cryptoclub.org/tools/caesar_cipher.php
The Caesar Cipher

• One of the first attempts to encrypt a message
 • Was used by Roman dictator Julius Caesar
• Alice and Bob agree on a secret number (key) between 0 and 25 to shift the alphabet

http://www.cryptoclub.org/tools/caesar_cipher.php
The Caesar Cipher

• One of the first attempts to encrypt a message
 • Was used by Roman dictator Julius Caesar
• Alice and Bob agree on a secret number (key) between 0 and 25 to shift the alphabet
 • For example, if the number is 2 then 'A' becomes 'C', 'B' becomes 'D', ..., 'Y' becomes 'A', 'Z' becomes 'B'

http://www.cryptoclub.org/tools/caesar_cipher.php
The Caesar Cipher

• One of the first attempts to encrypt a message
 • Was used by Roman dictator Julius Caesar
• Alice and Bob agree on a secret number (key) between 0 and 25 to shift the alphabet
 • For example, if the number is 2 then 'A' becomes 'C', 'B' becomes 'D', ..., 'Y' becomes 'A', 'Z' becomes 'B'

http://www.cryptoclub.org/tools/caesar_cipher.php
Breaking the Caesar Cipher

vgg ocz rjmgyn v novbz ,
viy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn :
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ;
viy jiz hvi di cdn odhz kgvtn hvit kvmon ,
Breaking the Caesar Cipher

- Observation: There are only 26 possible keys

vgg ocz rjmgyn v novbz ,
viiy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn :
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ;
viiy jiz hvi di cdn odhz kgvtn hvit kvmon ,

• Observation: There are only 26 possible keys
Breaking the Caesar Cipher

- Observation: There are only 26 possible keys
- Observation: Computers are fast
Breaking the Caesar Cipher

• Observation: There are only 26 possible keys
• Observation: Computers are fast
• Observation: Letters don't appear in English with the exact same frequency
Breaking the Caesar Cipher

• Observation: There are only 26 possible keys
• Observation: Computers are fast
• Observation: Letters don't appear in English with the exact same frequency
 • For example, 'E' appears more often than 'Z'

vgg ocz rjmgy'n v novbz ,
viiy vgg ocz hzi viy rjhzi hzmzgt kgvtnmz:
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ;
viiy jiz hvi di cdn odrz kgvtn hvit kvmon ,
Breaking the Caesar Cipher

- Observation: There are only 26 possible keys
- Observation: Computers are fast
- Observation: Letters don't appear in English with the exact same frequency
 - For example, 'E' appears more often than 'Z'

```plaintext
vgg ocz rjmgy'n v novbz ,
v iy vgg ocz hzi viy rjhzi hzmzgt kgvtzmn :
oczt cvqz oczdm zsdon viy oczdm ziomvixzn ;
v iy jiz hvi di cdn odhz kgvtn hvit kvmon ,
```
The Enigma Machine
The Enigma Machine

- Used by the German military in World War II
The Enigma Machine

- Used by the German military in World War II
- First broken by Polish mathematicians in 1932
The Enigma Machine

- Used by the German military in World War II
- First broken by Polish mathematicians in 1932
- Information gained by the Allied forces is estimated to have shortened fighting by two years
The Enigma Machine

- Used by the German military in World War II
- First broken by Polish mathematicians in 1932
- Information gained by the Allied forces is estimated to have shortened fighting by two years
- Implemented a progressive substitution cipher (e.g. different shift for each letter of the message)
Better Cryptography
Better Cryptography

- This will require a bit of math, but the detailed steps aren't particularly important
Better Cryptography

• This will require a bit of math, but the detailed steps aren't particularly important

• From here onward, we'll represent a message with a number \(m \), rather than a string of characters
Better Cryptography

• This will require a bit of math, but the detailed steps aren't particularly important

• From here onward, we'll represent a message with a number m, rather than a string of characters

• Main idea: It is feasible to find three large numbers e, d, and n such that $(m^e)^d = m \pmod{n}$
The RSA Algorithm
The RSA Algorithm

• RSA is an example of public-key cryptography
The RSA Algorithm

- RSA is an example of *public-key cryptography*
 - The public key is known to everyone and is used to encrypt messages for the user
The RSA Algorithm

• RSA is an example of *public-key cryptography*

 • The public key is known to everyone and is used to encrypt messages for the user

 • The private key is only known by the user and is the only way to decrypt a message
The RSA Algorithm

• RSA is an example of public-key cryptography
 • The public key is known to everyone and is used to encrypt messages for the user
 • The private key is only known by the user and is the only way to decrypt a message
 • This is also known as asymmetric cryptography: the message sender and recipient have two different keys
The RSA Algorithm

- RSA is an example of public-key cryptography
 - The public key is known to everyone and is used to encrypt messages for the user
 - The private key is only known by the user and is the only way to decrypt a message
 - This is also known as asymmetric cryptography: the message sender and recipient have two different keys
- Main idea: It is feasible to find three large numbers e, d, and n such that $(m^e)^d = m \pmod{n}$
The RSA Algorithm

- RSA is an example of *public-key cryptography*
 - The public key is known to everyone and is used to encrypt messages for the user
 - The private key is only known by the user and is the only way to decrypt a message
 - This is also known as *asymmetric cryptography*: the message sender and recipient have two different keys
- Main idea: It is feasible to find three large numbers e, d, and n such that $(m^e)^d = m \pmod{n}$
- Public key: e and n ("modulus")
The RSA Algorithm

- RSA is an example of **public-key cryptography**
 - The public key is known to everyone and is used to encrypt messages for the user
 - The private key is only known by the user and is the only way to decrypt a message
 - This is also known as **asymmetric cryptography**: the message sender and recipient have two different keys
- Main idea: It is feasible to find three large numbers e, d, and n such that $(m^e)^d = m \pmod{n}$
- Public key: e and n ("modulus")
- Private key: d
RSA Encryption and Decryption
RSA Encryption and Decryption
RSA Encryption and Decryption

• Suppose that Bob wants to send a message m to Alice
RSA Encryption and Decryption

• Suppose that Bob wants to send a message m to Alice
• He can encrypt a message by computing $c = m^e \pmod{n}$
RSA Encryption and Decryption

• Suppose that Bob wants to send a message m to Alice
• He can encrypt a message by computing $c = m^e \pmod{n}$
 • Everyone knows that Alice's public key is e and n
RSA Encryption and Decryption

• Suppose that Bob wants to send a message m to Alice
• He can encrypt a message by computing $c = m^e \pmod{n}$
 • Everyone knows that Alice's public key is e and n
• She can decrypt his message by computing $c^d = (m^e)^d = m \pmod{n}$
RSA Encryption and Decryption

• Suppose that Bob wants to send a message m to Alice
• He can encrypt a message by computing $c = m^e \pmod{n}$
 • Everyone knows that Alice's public key is e and n
• She can decrypt his message by computing $c^d = (m^e)^d = m \pmod{n}$
 • Only Alice knows her private key d
Breaking RSA
Breaking RSA

- Eve needs to compute d to decrypt the message
Breaking RSA

• Eve needs to compute d to decrypt the message
• e, d, and n aren't just three arbitrarily chosen numbers!
Breaking RSA

- Eve needs to compute d to decrypt the message
- e, d, and n aren't just three arbitrarily chosen numbers!
 - $n = pq$, where p and q are two very large primes ($\sim 2^{1024}$)
Breaking RSA

- Eve needs to compute \(d \) to decrypt the message
- \(e, d, \) and \(n \) aren't just three arbitrarily chosen numbers!
 - \(n = pq \), where \(p \) and \(q \) are two very large primes (~\(2^{1024} \))
 - For RSA encryption and decryption to work, \(ed = 1 \pmod{(p-1)(q-1)} \) (Euler's totient theorem)
Breaking RSA

- Eve needs to compute \(d \) to decrypt the message
- \(e, d, \) and \(n \) aren't just three arbitrarily chosen numbers!
 - \(n = pq \), where \(p \) and \(q \) are two very large primes (~\(2^{1024} \))
 - For RSA encryption and decryption to work, \(ed = 1 \ (mod \ (p-1)*(q-1)) \) (Euler's totient theorem)
- As far as we know, computing \(d \) means that we have to
Breaking RSA

• Eve needs to compute d to decrypt the message
• e, d, and n aren't just three arbitrarily chosen numbers!
 • $n = pq$, where p and q are two very large primes ($\sim 2^{1024}$)
 • For RSA encryption and decryption to work, $ed = 1 \pmod{(p-1)*(q-1)}$ (Euler's totient theorem)
• As far as we know, computing d means that we have to
 1. Factor n into p and q
Breaking RSA

• Eve needs to compute d to decrypt the message

• e, d, and n aren't just three arbitrarily chosen numbers!

 • $n = pq$, where p and q are two very large primes ($\sim 2^{1024}$)

 • For RSA encryption and decryption to work, $ed = 1 \pmod{(p-1) \cdot (q-1)}$ (Euler's totient theorem)

• As far as we know, computing d means that we have to

 1. Factor n into p and q

 2. Solve $ed = 1 \pmod{(p-1) \cdot (q-1)}$ for d
Breaking RSA

• Eve needs to compute d to decrypt the message
• e, d, and n aren't just three arbitrarily chosen numbers!
 • $n = pq$, where p and q are two very large primes ($\sim 2^{1024}$)
 • For RSA encryption and decryption to work, $ed = 1 \pmod{(p-1)*(q-1)}$ (Euler's totient theorem)
• As far as we know, computing d means that we have to
 1. Factor n into p and q
 2. Solve $ed = 1 \pmod{(p-1)*(q-1)}$ for d
• It turns out that Step 2 is easy and Step 1 is hard!
Breaking RSA

• Eve needs to compute d to decrypt the message
• e, d, and n aren't just three arbitrarily chosen numbers!
 • $n = pq$, where p and q are two very large primes ($\sim 2^{1024}$)
 • For RSA encryption and decryption to work, $ed = 1 \pmod{(p-1)*(q-1)}$ (Euler's totient theorem)
 • As far as we know, computing d means that we have to
 1. Factor n into p and q
 2. Solve $ed = 1 \pmod{(p-1)*(q-1)}$ for d
• It turns out that Step 2 is easy and Step 1 is hard!
• The security of RSA relies on factoring being difficult
Factoring is (Maybe) Hard
Factoring is (Maybe) Hard

• Quick! Factor 561!
Factoring is (Maybe) Hard

• Quick! Factor 561!

• There is no known efficient factoring algorithm
Factoring is (Maybe) Hard

• Quick! Factor 561!

• There is no known efficient factoring algorithm

• Researchers spent 2007–2009 on factoring a 768-bit modulus (232 digits)
Factoring is (Maybe) Hard

• Quick! Factor 561!

• There is no known efficient factoring algorithm

• Researchers spent 2007–2009 on factoring a 768-bit modulus (232 digits)
 • It took the equivalent of almost 2000 years of computing
Factoring is (Maybe) Hard

• Quick! Factor 561!

• There is no known efficient factoring algorithm

• Researchers spent 2007–2009 on factoring a 768-bit modulus (232 digits)
 • It took the equivalent of almost 2000 years of computing
 • Factoring a 1024-bit RSA modulus would be 1000x harder, but could happen in the next decade (2019 is coming up!)
Factoring Complexity
Factoring Complexity

• When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number \(n \) (i.e. \(\log_2 n \))
Factoring Complexity

• When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number \(n \) (i.e. \(\log_2 n \))

• Factoring is in NP: the answer can be verified by multiplying, which takes polynomial time
Factoring Complexity

• When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number n (i.e. $\log_2 n$)

• Factoring is in NP: the answer can be verified by multiplying, which takes polynomial time

• We don't know if factoring is in P: the best algorithms for factoring are better than exponential but worse than polynomial
Factoring Complexity

• When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number n (i.e. $\log_2 n$)

• Factoring is in NP: the answer can be verified by multiplying, which takes polynomial time

• We don't know if factoring is in P: the best algorithms for factoring are better than exponential but worse than polynomial

• Quantum computers can factor large numbers in polynomial time with Shor's algorithm
Factoring Complexity

• When people talk about factoring complexity, they typically describe runtime with respect to the bits that it takes to represent the number n (i.e. $\log_2 n$)

• Factoring is in NP: the answer can be verified by multiplying, which takes polynomial time

• We don't know if factoring is in P: the best algorithms for factoring are better than exponential but worse than polynomial

• Quantum computers can factor large numbers in polynomial time with Shor's algorithm
 • But their most recent breakthrough was factoring 21, so...
Applications of RSA
Applications of RSA

• For now (and for many years to come), RSA is secure
Applications of RSA

• For now (and for many years to come), RSA is secure
• Many protocols rely on RSA today
Applications of RSA

• For now (and for many years to come), RSA is secure
• Many protocols rely on RSA today
 • SSH (how to connect securely to the lab computers)
Applications of RSA

• For now (and for many years to come), RSA is secure
• Many protocols rely on RSA today
 • SSH (how to connect securely to the lab computers)
 • SSL/TLS (the "S" in "HTTPS", how to connect securely to Facebook, etc.)
Break!
Injection Attacks
Compromising Web Servers
Compromising Web Servers

• What could you do if you controlled one of Facebook's servers?
Compromising Web Servers

• What could you do if you controlled one of Facebook's servers?
• Steal sensitive data (e.g. data from many users)
Compromising Web Servers

• What could you do if you controlled one of Facebook's servers?
• Steal sensitive data (e.g. data from many users)
• Change server data (e.g. affect users)
Compromising Web Servers

• What could you do if you controlled one of Facebook's servers?
• Steal sensitive data (e.g. data from many users)
• Change server data (e.g. affect users)
• Gateway to enabling attacks on users
Compromising Web Servers

- What could you do if you controlled one of Facebook's servers?
- Steal sensitive data (e.g. data from many users)
- Change server data (e.g. affect users)
- Gateway to enabling attacks on users
- Impersonation (of users to servers, or vice versa)
Code Injection Attacks
Code Injection Attacks

- Injection attacks are one way to compromise web servers
Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
Code Injection Attacks

• Injection attacks are one way to compromise web servers
• People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
• General attack structure:
Code Injection Attacks

• Injection attacks are one way to compromise web servers

• People first started talking about this back in 1998, with hundreds of proposed fixes and solutions

• General attack structure:
 • Attacker user provides some bad input
Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
- General attack structure:
 - Attacker user provides some bad input
 - Web server does not check input format
Code Injection Attacks

- Injection attacks are one way to compromise web servers
- People first started talking about this back in 1998, with hundreds of proposed fixes and solutions
- General attack structure:
 - Attacker user provides some bad input
 - Web server does not check input format
 - Enables attacker to execute arbitrary code on the server
Injection attacks are one way to compromise web servers.

People first started talking about this back in 1998, with hundreds of proposed fixes and solutions.

General attack structure:

- Attacker user provides some bad input
- Web server does not check input format
- Enables attacker to execute arbitrary code on the server
Summary
Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm
Summary

• Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm.

• Cryptography studies how we can communicate with others securely.
Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm.
- Cryptography studies how we can communicate with others securely.
- As programmers, we must be mindful of security best practices when developing applications.
Summary

- Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm.
- Cryptography studies how we can communicate with others securely.
- As programmers, we must be mindful of security best practices when developing applications.
 - Even then, it might not be enough!
Summary

• Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm

• Cryptography studies how we can communicate with others securely

• As programmers, we must be mindful of security best practices when developing applications
 • Even then, it might not be enough!

• CS 161 (Computer Security) goes into much more depth
Summary

• Computer security studies how we can allow for the intended use of computer systems while preventing unwanted use that may cause harm.

• Cryptography studies how we can communicate with others securely.

• As programmers, we must be mindful of security best practices when developing applications.
 • Even then, it might not be enough!

• CS 161 (Computer Security) goes into much more depth.

• CS 261 and CS 276 are the graduate-level security and cryptography classes.